
Unimodular Completion of Polynomial Matrices

Wei Zhou and George Labahn
Cheriton School of Computer Science

University of Waterloo,
Waterloo, Ontario, Canada

{w2zhou,glabahn}@uwaterloo.ca

ABSTRACT
Given a rectangular matrix F ∈ K[x]m×n with m < n of
univariate polynomials over a field K we give an efficient al-
gorithm for computing a unimodular completion of F. Our
algorithm is deterministic and computes such a completion,
when it exists, with cost O∼ (nωs) field operations from K.
Here s is the average of the m largest column degrees of
F and ω is the exponent on the cost of matrix multiplica-
tion. Here O∼ is big-O but with log factors removed. If a
unimodular completion does not exist for F, our algorithm
computes a unimodular completion for a right cofactor of a
column basis of F, or equivalently, computes a completion
that preserves the generalized determinant.

Categories and Subject Descriptors: I.1.2 [Symbolic
and Algebraic Manipulation]: Algorithms; F.2.2 [Analysis
of Algorithms and Problem Complexity]: Nonnumerical Al-
gorithms and Problems
General Terms: Algorithms, Theory

Keywords: Order Basis, Minimal Kernel Basis, Unimod-

ular Matrices, Unimodular Completion

1. INTRODUCTION
Let F ∈ K [x]m×n with m < n be a full-rank rectangular

matrix. We consider the unimodular completion problem of

finding a second rectangular matrix G ∈ K [x](n−m)×n such

that

[
F
G

]
is unimodular. Here a square matrix of univari-

ate polynomials is unimodular if its determinant is a nonzero
constant (and so also has an inverse consisting of polynomi-
als). In fact, we consider the more general problem of finding

G ∈ K [x](n−m)×n such that the F and

[
F
G

]
have the same

generalized determinant. Here the generalized determinant
denotes the product of the nonzero diagonal elements of its
Smith form. The standard unimodular completion problem
is then the special case where the generalized determinant
of F is 1.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC’14, July 23–25, 2014, Kobe, Japan.
Copyright 2014 ACM 978-1-4503-2501-1/14/07 ...$15.00.

In general unimodular completion is a useful basic oper-
ation in many matrix computations [10]. For example, in
the case of a single row (i.e. m = 1) unimodular completion
plays a key role in proofs for Hermite and Smith normal
forms. In the case of rectangular matrices of multivariate
polynomials, the problem has more storied history because
of its role in solving Serre’s conjecture that projective mod-
ules over polynomial rings are free [8]. Serre’s conjecture was
proved independently by Quillen and Suslin in 1976 using
unimodular completion [12]. Later on their nonconstructive
methods were replaced by constructive methods, for exam-
ple that of Logar and Sturmfels [9]. Unimodular completion
also appears in non commutative domains, specifically where
their use includes the reduction of mathematical systems
to ones having fewer functions and parameters [5]. Addi-
tional applications in multidimensional systems theory, in-
cluding a description of a Maple package which implements
the Quillen-Suslin theorem, can be found in [6].

Unimodular completions do not exist for all rectangular
matrices. For example, the matrix [0, x] cannot be com-
pleted to a 2× 2 unimodular matrix. In the case where F is
a single row, a unimodular completion exists if and only if
all the entries in F are relatively prime [10]. More generally
we can show that a unimodular completion of F exists if
and only if there exists a unimodular matrix U such that
F ·U = [Im, 0]. For simplicity and without loss of generality,
we focus our discussion on the situation where the unimod-
ular completion always exists. For an input matrix that
cannot be completed to a unimodular matrices, we can al-
ways factor it as F = TG using the column basis algorithm
from [15], something which can be done efficiently. Then
the right factor G can be unimodularly completed. How-
ever, an even simpler way is to apply our algorithm directly
on the input matrix, as the algorithm works effectively on
any input matrix to compute a completion that preserves
the generalized determinant.

The algorithm we present in this paper has a cost of
O∼ (nωs) field operations, where s is the average of the m
largest column degrees of F. Our approach is to embed
our matrix into an order basis problem [1]. We take ad-
vantage of the fact that order bases are closely related to
unimodular matrices when one reverses the order of column
coefficients. More precisely, we first reverse coefficients of
F, then compute a kernel basis M of this new object, and
a left order basis Q of M. Reversing coefficients in Q then
gives a unimodular completion of F. A major challenge lies
in determining the right shifts and orders so that the pieces
both fit together and give a low complexity.

2. PRELIMINARIES
In this section we give the basic cost model, notations, and

the basic definitions and properties of shifted degree, kernel
basis, column basis, and order basis which are needed for our
discussion and algorithm.

2.1 Cost model
Algorithms are analyzed by bounding the number of arith-

metic operations in the coefficient field K on an algebraic
random access machine. We will frequently use the fact that
the cost of multiplying two polynomial matrices with dimen-
sion n and degree bounded by d is O∼(nωd) field operations
from K, where ω is the exponent of matrix multiplication.
We refer to the book by [11] for more details and references
about polynomial and matrix multiplication.

2.2 Notations
For convenience we adopt the following notations in this

paper.

Comparing Unordered Lists For two lists ~a ∈ Zn and
~b ∈ Zn, let ā = [ā1, . . . , ān] ∈ Zn and b̄ =

[
b̄1, . . . , b̄n

]
∈

Zn be the lists consists of the entries of ~a and ~b but
sorted in increasing order.

~a ≥ ~b if āi ≥ b̄i for all i ∈ [1, . . . , n]

~a ≤ ~b if āi ≤ b̄i for all i ∈ [1, . . . , n]

~a >~b if ~a ≥ ~b but āj 6= b̄j

~a <~b if ~a ≤ ~b but āj 6= b̄j

Uniform Shift of a List For a list ~a = [a1, . . . , an] ∈ Zn
and c ∈ Z, we write ~a + c to denote ~a + [c, . . . , c] =
[a1 + c, . . . , an + c], with subtraction handled similarly.

Compare a List with an Integer For ~a = [a1, . . . , an] ∈
Zn and c ∈ Z, we write ~a < c to denote ~a < [c, . . . , c],
and similarly for >,≤,≥,=.

2.3 Shifted degrees
Our methods depend extensively on the concept of shifted

degrees of polynomial matrices [3]. For a column vector

p = [p1, . . . , pn]T of univariate polynomials over a field K,
its column degree, denoted by cdegp, is the maximum of
the degrees of the entries of p, that is,

cdegp = max
1≤i≤n

deg pi.

The shifted column degree generalizes this standard column
degree by taking the maximum after shifting the degrees
by a given integer vector that is known as a shift. More
specifically, the shifted column degree of p with respect to
a shift ~s = [s1, . . . , sn] ∈ Zn, or the ~s-column degree of p is

cdeg ~sp = max
1≤i≤n

[deg pi + si] = cdeg (x~s · p),

where

x~s = diag (xs1 , xs2 , . . . , xsn) .

For a matrix P, we use cdegP and cdeg ~sP to denote re-
spectively the list of its column degrees and the list of its
shifted ~s-column degrees. When ~s = [0, . . . , 0], the shifted
column degree specializes to the standard column degree.
The shifted row degree is defined in a similar way.

Shifted degrees have been used previously in polynomial
matrix computations and in generalizations of some matrix
normal forms [4]. The shifted column degree is equivalent
to the notion of defect commonly used in the literature.

Along with shifted degrees we also make use of the notion
of a polynomial matrix being column reduced. A polyno-
mial matrix A ∈ K [x]m×n is column reduced if the leading
column coefficient matrix, that is the matrix

lcoeff ~dA = [coeff(aij , x, dj)]1≤i≤m,1≤j≤n, with ~d = cdegA,

has full rank. A polynomial matrix A is ~s-column reduced
if x~s ·A is column reduced.

The usefulness of the shifted degrees can be seen from
their applications in polynomial matrix computation prob-
lems [13, 14, 16]. One of its uses is illustrated by the fol-
lowing lemma, which follows directly from the definition of
shifted degree.

Lemma 2.1. If the ~u-column degrees of A ∈ K [x]m×n are
bounded by the corresponding entries of an integer list ~v ∈
Zn, (or equivalently, the −~v-row degrees of A are bounded by

−~u) and the ~v-column degrees of B ∈ K [x]n×k are bounded
by ~w ∈ Zk, then the ~u-column degrees of AB are bounded by
~w.

An essential subroutine needed in our algorithm, also based
on the use of the shifted degrees, is the efficient multiplica-
tion of a pair of matrices A ·B with unbalanced degrees [13,
Theorem 5.6]. The notation

∑
~s, for any list ~s, denotes the

sum of all entries in ~s.

Theorem 2.2. Let A ∈ K [x]m×n with m ≤ n, ~s ∈ Zn a
shift with entries bounding the column degrees of A and ξ̌, a
bound on the sum of the entries of ~s. Let B ∈ K [x]n×k with
k ∈ O (m) and the sum θ of its ~s-column degrees satisfying
θ ∈ O

(
ξ̌
)
. Then we can multiply A and B with a cost of

O∼(nωt), where t = ξ̌/n.

2.4 Kernel bases and column bases
Let F ∈ K [x]m×n be a matrix of polynomials over a field

K. The kernel of F ∈ K [x]m×n is the K [x]-module

{p ∈ K [x]n | F · p = 0}

with a kernel basis of F being a basis of this module.

Definition 2.3. Given F ∈ K [x]m×n, a polynomial ma-
trix N ∈ K [x]n×∗ is a ~s-minimal (right) kernel basis of F
if N is a kernel basis of F and N is ~s-column reduced. We
also call a ~s-minimal (right) kernel basis of F a (F, ~s)-kernel
basis.

In this paper we require two essential properties of shifted
minimal kernel bases : a bound on the size of the minimal
kernel and the cost of computing such a minimal kernel.
Both results come from [16].

Theorem 2.4. Suppose F ∈ K [x]m×n and ~s ∈ Zn≥0 is a
shift with entries bounding the corresponding column degrees
of F. Then the sum of the ~s-column degrees of any ~s-minimal
kernel basis of F is bounded by ξ =

∑
~s.

Theorem 2.5. Let F ∈ Km×n and ~s be a shift bounding
the corresponding column degrees of F. Then a ~s-minimal
kernel basis of F can be computed in O∼ (nωs) field opera-
tions from K, where s is the average of the m largest column
degrees of F.

A column basis of F is a basis for the K [x]-module

{Fp | p ∈ K [x]n } .

Such a basis can be represented as a full rank matrix T ∈
K [x]m×r whose columns are the basis elements. Equiva-
lently, there exists a unimodular matrix U that transforms
the matrix F to FU = [T, 0] with a full rank matrix T
defined as a column basis of F.

The cost of column basis computation for F ∈ K[z]m×n

is given in [15] with the cost given as O∼
(
nmω−1ŝ

)
field

operations in K, where ŝ is the average column degree of F.

2.5 Order bases
Let K be a field, F ∈ K [x]m×n a matrix of polynomials

and ~σ a list non-negative integer.

Definition 2.6. A vector of polynomials p ∈ K [x]n×1

has order (F, ~σ) (or order ~σ with respect to F) if F · p ≡ 0
mod x~σ, that is,

F · p = x~σr

for some r ∈ K [x]m×1.
The set of all order (F, ~σ) vectors is a K [x]-module de-

noted by 〈(F, ~σ)〉.

Note that the matrix F can also be a matrix of power series
[1], but restricting it to matrix of polynomials is sufficient
for our purpose in this paper. Also note that the order ~σ
may not be uniform.

An order basis P of F with order ~σ and shift ~s, or an
(F, ~σ,~s)-order basis, or simply an (F, ~σ,~s)-basis, is a poly-
nomial matrix whose columns form a basis for the module
〈(F, ~σ)〉 having minimal ~s-column degrees [1, 2]. Again, note
that a ~s-column reduced basis of 〈(F, ~σ)〉 has the minimal
~s-column degrees among all bases of 〈(F, ~σ)〉.

We will compute order bases with unbalanced shift using
Algorithm 2 from [14] with the following cost.

Theorem 2.7. For an input matrix F ∈ K [x]m×n, if the
shift ~s satisfies ~s ≥ 0 and

∑
~s ∈ O(mσ), then a (F, σ,−~s)-

basis can be computed with a cost of O∼(nωa) field opera-
tions, where a = mσ/n.

We will need a special case of Theorem 5.1 in [2] which for
completeness is stated below.

Theorem 2.8. For a matrix F ∈ K [x]m×n, an order vec-
tor ~σ, and a shift vector ~s, if P is a (F, ~σ,~s)-basis with ~s-
column degrees ~t, and Q is a (FP, ~τ ,~t) -basis with ~t-column
degrees ~u, where ~τ ≥ ~σ component-wise, then PQ is a (F, ~τ , ~s)-
basis with ~s-column degrees ~u.

In this paper we also will need the following lemma from
[15, 13] which shows that a left kernel basis of a right kernel
basis is contained in an order basis of a right kernel basis.

Lemma 2.9. For a matrix A ∈ K [x]m×n, and a shift vec-

tor ~s, if N is a (A, ~s)-kernel basis with cdeg ~sN = ~b and P

be a
(
NT ,~b+ 1,−~s

)
-basis. Partition P = [P1,P2] where

P1 consists of all columns p with cdeg−~s p ≤ 0. Then P1

is a (NT ,−~s)-kernel basis.

We remark that the condition cdeg−~s p ≤ 0 is the same as
specifying deg pi ≤ si for all i.

2.6 The existence of unimodular completion
We know that row vectors whose entries are relatively

prime can be completed to unimodular matrices. We also
have a more general criterion on the existence of unimodular
completion for matrices.

Lemma 2.10. A unimodular completion of F exists if and
only if F has unimodular column bases.

Proof. If F has a non-unimodular column basis A, then

diag ([A, I]) is always a factor of

[
F
B

]
for any polynomial

matrix B, implying that the matrix

[
F
B

]
is non-unimodular.

On the other hand, if F has a unimodular column basis,
then recall that there exists a unimodular matrix U such
that FU = [Im, 0], where Im is a column basis of F. This
gives F = [Im, 0]U−1 after rearranging, that is, F must
be consists of the top m rows of U−1. The matrix U−1 is
therefore a unimodular completion of the matrix F. 2

The proof of Lemma 2.10 shows that a unimodular comple-
tion of F can be obtained from the unimodular matrix U
that transforms F to its column bases. However, we may
not be able to compute this U efficiently since its degree
might be too large. More specifically, U contains a kernel
basis of F that may have degree ξ =

∑
~s, while each of the

remaining columns of U may also have degree ξ.

3. REVERSING OPERATIONS
Our procedure relies heavily on operations that reverse

the order of coefficients of polynomial matrices. Reverse op-
erations have been used in the past for computing matrix
normal forms using order basis computations. Here we ex-
tend the reverse operations to work with shifted degrees.
We show how reverse operations can be applied systemat-
ically to polynomial matrices with certain shifted degrees,
and then provide some properties of the reverse operations.

For a polynomial p = p0 + p1x + · · · + pux
u ∈ K [x] with

degree bounded by u, the order of its coefficients can be
reversed as

rev(p, u) = p(x−1) · xu = pu + pu−1x+ · · ·+ p1x
u−1 + p0x

u.

This can be extended to column vectors and row vectors
with shifted degrees.

Definition 3.1. Let ~u = [u1, . . . un] ∈ Zn be a degree

shift, and a = [a1, . . . , an]T ∈ K [x]n×1, a column vector
with ~u-column degree bounded by v. We define

colRev(a, ~u, v) = x−~ua(x−1) xv =

rev(a1, v − u1)
...

rev(an, v − un)

 .
Similarly for a row vector b ∈ K [x]1×n with rdeg ~ub ≤ v,
where ~u = [u1, . . . un] ∈ Zn is a degree shift, we define

rowRev(b, ~u, v) = colRev(bT , ~u, v)T = xvb(x−1) x−~u.

Example 3.2. If f =
[
10 + x, 5 + x+ 2x2

]
, ~u = [−1,−2],

and v = 0, then

rowRev(f , ~u, v) = x0
[
10 + x−1, 5 + x−1 + 2x−2] [x

x2

]
=
[
10x+ 1, 5x2 + x+ 2

]
.

We can extend the reverse operation further to polynomial
matrices.

Definition 3.3. Let ~u = [u1, . . . un] ∈ Zn be a degree

shift and A ∈ K [x]n×k with ~u-column degrees bounded by
~v = [v1, . . . , vk] ∈ Zk. Define

colRev(A, ~u,~v) = [colRev(A, ~u, v1), . . . , colRev(A, ~u, vk)]

= x−~uA(x−1) x~v.

Similarly, for ~u ∈ Zn and B ∈ K [x]k×n with ~u-row degrees
bounded component-wise by ~v ∈ Zk,

rowRev(B, ~u,~v) =

rowRev(B, ~u, v1)
...

rowRev(B, ~u, vk)

= colRev(BT , ~u,~v)T

= x~vB(x−1) x−~u.

It is not difficult to see that

rowRev(B, ~u,~v) = colRev(B,−~v,−~u).

It is useful to note that any degree bound remains the same
after the reverse operations.

Lemma 3.4. If A ∈ K [x]n×k has cdeg ~uA ≤ ~v, then
Ac = colRev(A, ~u,~v) also has cdeg ~uA

c ≤ ~v.

As one would expect, applying two reverse operations gives
back the original input.

Lemma 3.5. The following equalities holds:

colRev (colRev(A, ~u,~v), ~u,~v) = A

rowRev (rowRev(B, ~u,~v), ~u,~v) = B.

The following lemmas show the commutativity between re-
verse operations and multiplications.

Lemma 3.6. If A ∈ K [x]m×n has cdeg ~uA ≤ ~v, and B ∈
K [x]n×k has cdeg ~vB ≤ ~w, then

colRev(A, ~u,~v) colRev(B, ~v, ~w) = colRev(AB, ~u, ~w)

has ~u-column degrees bounded by ~w.

Lemma 3.7. If A ∈ K [x]m×n has rdeg ~uA ≤ ~v, and B ∈
K [x]n×k has cdeg−~uB ≤ ~w, then

rowRev(A, ~u,~v) colRev(B,−~u, ~w) = colRev(AB,−~v, ~w).

More details on these reverse operations are found in [13].
There is a natural relationship between a shifted minimal

kernel basis and the reverse operation.

Lemma 3.8. Let ~u ∈ Zn and A ∈ K [x]m×n with (−~u)-
row degrees bounded by ~a. If Ar = rowRev (A,−~u,~a) then

a matrix N ∈ K [x]n×kwith ~u-column degrees ~b is a (A, ~u)-

kernel basis if and only if Nc = colRev
(
N, ~u,~b

)
is a (Ar, ~u)-

kernel basis

Proof. First note that any vector q with cdeg ~uq = α is
in the kernel of A if and only if qc = colRev (q, ~u, α) is in
the kernel of Ar, since by Lemma 3.7 A · q = 0 implies

Ar · qc = colRev (A · q,−~a, α) = 0,

and Ar · qc = 0 implies

A · q = colRev (Ar · qc,−~a, α) = 0.

It follows that any matrix N is a kernel basis of A if and
only if Nc = colRev (N, ~u, cdeg ~uN) is a kernel basis of Ar.
Lemma 3.4 then ensures that the minimality also holds at
the same time. 2

4. UNIMODULAR COMPLETION
In this section, we look at how a unimodular completion

can be done using a combination of kernel basis computa-
tions, order basis computations, and reverse operations.

We will show in Lemma 4.1 a close relationship between
order bases and unimodular matrices, namely, suitable re-
verse operations can be applied to order bases to obtain uni-
modular matrices. This suggests that the problem of finding
a unimodular completion of F is equivalent to finding some
order basis containing a reversed F. In addition, Lemma 2.9
shows how a kernel basis can be embedded in an order basis,
that is, if we can make the reversed F a kernel basis of some
matrix M, then there is an order basis of M that contains
the reversed F. A natural choice for M is a kernel basis of
the reversed F. We actually have two choices here. We can
either reverse the coefficients of F, as we do in Theorem 4.4,
or we can reverse the coefficients of a kernel basis of F.

First let us look at how an order basis can lead to a uni-
modular matrix.

Lemma 4.1. Given any matrix A ∈ K [x]m×n and ~u ∈ Zn
a degree shift, if P is an (A, ~σ, ~u)-basis with cdeg ~uP = ~v.
Then Pc = colRev(P, ~u,~v) is unimodular.

Proof. Note first that the identity matrix is an (A, 0, ~u)-
basis, which has ~u-column degrees ~u and determinant 1. An
(A, ~σ, ~u)-basis Q can then be constructed iteratively based
on Theorem 2.8 and using the algorithms from [1, 7], which
only increase the ~u-column degrees of the basis by multi-
plying some columns by x each time. The minimality of
order bases ensures that cdeg ~uQ = cdeg ~uP = ~v. As the
~u-column degrees of the basis are increased from ~u to ~v, its
determinant of Q therefore increased from 1 to x

∑
~v−

∑
~u.

Since any two (A, ~σ, ~u)-bases are unimodularly equivalent,
we get

det (P) = det (QU) = c · x
∑
~v−

∑
~u

for some unimodular matrix U ∈ K [x]n×n and nonzero con-
stant c ∈ K. Hence

det (Pc) = det
(
x−~u

(
P(x−1)

)
x~v
)

= x−
∑
~u · det

(
P(x−1)

)
· x

∑
~v

= c · x
∑
~v · x−

∑
~v+

∑
~u · x−

∑
~u = c

and Pc is unimodular. 2

Example 4.2. Let A ∈ Z5[x]2×4 be given by[
1 0 2 + 2x 3 + 4x

0 x2 1 + 3x4 1 + 4x+ 3x4

]

and ~u = [−2,−3,−1,−1] . Then one can show that

P =

4x+ 3x2 4 + x+ 3x2 x3 0

1 2x3 0 x4

4x 4 + x 0 0

x 1 0 0

is an (A, [3, 6], ~u)-basis with cdeg ~uP = [0, 0, 1, 1]. Reversing
coefficients gives the unimodular matrix

Pc =

4x+ 3 4x2 + x+ 3 1 0

x3 2 0 1

4 4x+ 1 0 0

1 x 0 0

 .
2

The following lemma shows the unimodular equivalence be-
tween any matrix A that has a unimodular column basis,
and a left kernel basis of any right kernel basis of A. This
is needed later in Theorem 4.4 in order to replace F with a
kernel basis that can be embedded in a unimodular matrix.

Lemma 4.3. Let A ∈ K [x]m×n have a unimodular col-

umn basis and N ∈ K [x]n×(n−m) be a right kernel basis of
A. If B is a left kernel basis of N then A = UB for a
unimodular matrix U.

Proof. This follows from [15, Lemma 3.3] which tells us
that if U is a column basis of A then A = UB. 2

We are now ready to state a key result that allows a unimod-
ular completion to be computed for a given input matrix F.
Basically, we compute a kernel basis of a reversed F, then
an order basis of the kernel basis can be reversed to provide
a unimodular completion of F.

Theorem 4.4. Let Fr = rowRev (F,−~u, 0) and M be a

(Fr, ~u)-kernel basis with cdeg ~uM = ~b. Let P = [P1,P2] be

a
(
MT ,~b+ 1,−~u

)
-basis, where P1 consists of all columns

p with cdeg−~up ≤ 0. If Pr
2 = colRev (P2,−~u, cdeg−~uP2),

then

[
F

Pr
2
T

]
is a unimodular completion of F.

Proof. Let Pr
1 = colRev (P1,−~u,~v) where ~v = cdeg−~uP1

is the shifted degree of P1. We know from Lemma 4.1 that

[Pr
1,P

r
2] is unimodular. Let Mr = colRev

(
M, ~u,~b

)
. Then

from Lemma 3.8 we know Mr is a (F, ~s)-kernel basis and

Pr
1 is a

(
(Mr)T ,−~u

)
-kernel basis. Hence, by Lemma 4.3,

F = U (Pr
1)T for some unimodular matrix U. Therefore[

F
Pr

2
T

]
=

[
U 0
0 I

]
·
[

Pr
1
T

Pr
2
T

]
hence is itself unimodular. 2

Example 4.5. Let F ∈ Z5[x]2×4 be given by[
−2x+ 1 2x3 −2 2

−x2 + 2x −x3 + 2 −x+ 2 x− 1

]

with shift ~u = [2, 3, 1, 1]. Then the transpose of a ~u-minimal
kernel basis for the row reversed polynomial matrix, Fr, is
given by

MT =

[
1 0 2 + 2x 4x+ 3

0 x2 1 + 3x4 1 + 4x+ 3x4

]

with ~b = cdeg ~uM = [2, 5]. An (MT ,~b + 1,−~u)-order basis
is given by

P =

4x+ 3x2 4 + x+ 3x2 x3 0

1 2x3 0 x4

4x 4 + x 0 0

x 1 0 0

from Example 4.2. Reversing the last two columns of P and
taking transposes give a unimodular completion

PrT
2 =

[
1 0 0 0

0 1 0 0

]
.

2

Theorem 4.4 provides a way to correctly compute a uni-
modular completion of F. To improve the computational
efficiency, it is helpful to separate the rows of MT and just
work with one subset of rows at a time. This is possible by
the following lemma.

Lemma 4.6. Let Fr = rowRev (F,−~u, 0) and M be a

(Fr, ~u)-kernel basis with cdeg ~uM = ~b and partitioned as
M = [M1,M2]. Let P1 be a

(
MT

1 , cdeg ~uM1 + 1,−~u
)
-basis

partitioned as P1 = [N1,Q1], where N1 consists of all columns
p of P1 with cdeg−~up ≤ 0. Let ~t = cdeg−~uN1 and P2 be a(
MT

2 N1, cdeg ~uM2 + 1,~t
)
-basis partitioned as P2 = [N2,Q2],

where N2 consists of all columns p of P2 with cdeg−~tp ≤ 0.
If R = [N1Q2,Q1] and Rr = colRev (R,−~u, cdeg−~uR),

then

[
F

RrT

]
is a unimodular completion of F.

Proof. Let Pr
1 = colRev (P1,−~s, cdeg−~sP1) and Pr

2 =
colRev

(
P2,~t, cdeg ~tP2

)
. From Lemma 4.1 we have that

both Pr
1 and Pr

2 are unimodular and hence

Pr
1 · diag ([Pr

2, I]) = [Nr
1N

r
2,N

r
1Q

r
2,Q1] = [Nr

1N
r
2,R

r]

is unimodular, where N1N2 is a kernel basis of M. The re-
sult follows by the same reasoning as in the proof of Theorem
4.4. 2

5. EFFICIENT COMPUTATION
Lemma 4.6 provides a way to correctly compute a uni-

modular completion of F. Our next task is to make sure it
can be computed efficiently and analyze its computational
cost. We already know that a (Fr, ~s)-kernel basis can be
computed with a cost of O∼ (nωs). Therefore, it only re-
mains to check the cost of the order basis computations.
Note that the non-uniform order makes our problem here a
little more difficult. However, the output basis has its −~s-
column degrees bounded by 1, which is a consequence of the

fact M is a ~s-minimal kernel basis, as shown in Lemma 5.4
below. But we first need a few general lemmas on the degree
bounds of order bases and kernel bases.

First, the following lemma is a simple extension of Lemma
3.2 in [16] for dealing with nonuniform orders.

Lemma 5.1. Given A ∈ Km×n[x], a shift ~u ∈ Zn, and
an order list ~σ ∈ Zm, let ~v be the ~u-column degrees of a
(A, ~σ, ~u)-basis. Then∑

~v ≤
∑

~u+
∑

~σ.

Proof. The sum of the ~u-column degrees is
∑
~u at order

0, since the identity matrix is a (A, 0, ~u)-basis. This sum
increases by 1 for each order increase of each row. The total
number of order increases required for all rows is at most∑
~σ. Note that from Theorem 2.8, we can work with just

one row at a time to increase its order in the order basis
computation. 2

The following lemma extends Theorem 2.4 to give a bound
based on the shifted column degrees or shifted row degrees,
instead of just the column degrees of the input matrix.

Lemma 5.2. If A ∈ Km×n[x] has rdeg ~uA ≤ ~v or equiv-
alently cdeg−~vA ≤ −~u, then any (A,−~u)-kernel basis B
satisfies ∑

cdeg−~uB ≤
∑

~v −
∑

~u.

Proof. Let P =
[
B, B̄

]
be a (A, ~v + σ,−~u)-basis con-

taining a kernel basis, B, of A. Then∑
cdeg−~uP ≤ mσ +

∑
~v −

∑
~u. (1)

by Lemma 5.1 From Lemma 2.1 we also know that∑
cdeg−~uB̄ ≥

∑
cdeg−~vAB̄.

In addition, we know

cdegAB̄ ≥ ~v + σ

since B̄ has order (A, ~v + σ), implying∑
cdeg−~vAB̄ ≥ mσ

and so ∑
cdeg−~uB̄ ≥ mσ. (2)

Combining (1) and (2), It follows that∑
cdeg−~uB =

∑
cdeg−~uP−

∑
cdeg−~uB̄

≤
∑

~v −
∑

~u.

2

Note that Lemma 5.2 specializes to Theorem 2.4 when ~v = 0.
When the matrix A is also a

(
BT , ~u

)
-kernel basis, as in

our case, the bound in fact becomes tight.

Lemma 5.3. Let A ∈ Km×n[x] and B ∈ Kn×(n−m) [x]. If
B is a (A,−~u)-kernel basis with cdeg−~uB = ~w and AT is
a
(
BT , ~u

)
-kernel basis with rdeg ~uA = ~v, then∑

~w =
∑

~v −
∑

~u.

Proof. This follows from Lemma 5.2, which gives∑
~w ≤

∑
~v −

∑
~u

and also ∑
~v ≤

∑
~w +

∑
~u

in the reverse direction. 2

From Lemma 2.9, we know that any
(
MT ,~b+ 1,−~s

)
-basis

contains a
(
MT ,−~s

)
-kernel basis whose −~s-column degrees

are bounded by 0. The following lemma shows that the re-

maining part of the
(
MT ,~b+ 1,−~s

)
-basis has degrees bounded

by 1.

Lemma 5.4. Let Fr = rowRev (F,−~s, 0) and M be a (Fr, ~s)-

kernel basis with cdeg ~sM = ~b. Partition P, a(
MT ,~b+ 1,−~s

)
-basis, as P = [P1,P2] where where P1

consists of all columns p with cdeg−~s p ≤ 0. Then

cdeg−~b−1M
TP2 = 0 and cdeg−~sP2 = 1.

Proof. We already know that P contains a
(
MT ,−~s

)
-

kernel basis P1. Furthermore as in the proof of Lemma 5.2
we have ∑

cdeg−~sP = −
∑

~s+
∑

~b+ n−m

while from Lemma 5.3 we have for the kernel basis P1 in P∑
cdeg−~sP1 =

∑
~b−

∑
~s

and therefore,
∑

cdeg−~sP2 = n −m. From Lemma 2.1, it
follows that∑

cdeg−~bM
TP2 ≤

∑
cdeg−~sP2 = n−m,

or equivalently, ∑
cdeg−~b−1M

TP2 ≤ 0.

But since P2 is nonzero and has order
(
F,~b+ 1

)
, we have∑

cdeg−~b−1M
TP2 ≥ 0.

It follows that ∑
cdeg−~b−1M

TP2 = 0

hence cdeg−~b−1M
TP2 = 0 or cdeg−~bM

TP2 = 1. Combin-
ing this with∑

cdeg−~bM
TP2 ≤

∑
cdeg−~sP2 = n−m

we then get cdeg−~sP2 = 1. 2

We are now ready to look at the procedure for computing

a
(
MT ,~b+ 1,−~s

)
-basis, given in Algorithm Algorithm 1.

The situation here is similar to the situation in computing a
left kernel basis in the column basis computation from [15].

That is, the order ~b+1, or equivalently, the ~s-row degrees of
MT may be unbalanced and can have degree as large as

∑
~s.

We therefore follow the same process as in the computation
of column bases [15].

We assume without loss of generality that the rows of MT

are arranged in decreasing ~s-row degrees and divide MT into
dlog ke row blocks according to the ~s-row degrees of its rows.
Let

MT =

M1

M2

...
Mdlog ke

T

with Mlog k,Mlog k−1, · · · ,M2,M1 having ~s-row degrees in
the range

[0, 2ξ/k] , (2ξ/k, 4ξ/k], (4ξ/k, 8ξ/k], ..., (ξ/4, ξ/2], (ξ/2, ξ]

respectively. Let σi =
⌈
ξ/2i−1

⌉
+ 1 and ~σi = [σi, . . . , σi]

with the same dimension as the row dimension of Mi, and

~σ =
[
~σdlog ke, ~σdlog ke−1, . . . , ~σ1

]
be the order in the order basis computation. For simplicity,
instead of using MT as the input matrix, we use

M̂ =

 M̂1

...

M̂dlog ke

 = x~σ−
~b−1

 M1

...
Mdlog ke

 = x~σ−
~b−1MT

instead, so that the order of our problem in each block is

uniform and a
(
M̂, ~σ,−~s

)
-basis is a

(
MT ,~b+ 1,−~s

)
-basis.

We now do a series of order basis computations in order
to compute a unimodular completion of F based on Lemma
4.6.

1. Let ~s1 = ~s. First we compute an
(
M̂1, ~σ1,−~s1

)
-order

basis using Algorithm 2 of [14], which can be done
with a cost of O∼ (nωs). Partition P1 = [N1,Q1],

where N1 is a
(
M̂1,−~s1

)
-kernel basis. Set Ñ1 = N1

and ~s2 = −cdeg−~sN1.

2. Compute an
(
M̂2Ñ1, ~σ2,−~s2

)
-order basis and parti-

tion P2 = [N2,Q2] with N2 a
(
M̂2,−~s2

)
-kernel ba-

sis. Set Ñ2 = Ñ1N2 and ~s3 = −cdeg−~s2N2. Note

that Ñ2 is a −~s-minimal kernel basis of

[
M̂1

M̂2

]
with

~s3 = −cdeg−~sÑ2.

3. Continue this process, an
(
M̂iÑi−1, ~σi,−~si

)
-order ba-

sis Pi is computed at step i. Partition Pi = [Ni,Qi]

with Ni an
(
M̂iÑi−1,−~si

)
-kernel basis, where ~si =

−cdeg−~sÑi−1 = −cdeg−~si−1Ni−1. Then

Ñi =

i∏
j=1

Ni = Ñi−1Ni

is a −~s-minimal kernel basis of the first i blocks of MT .
In particular, Ñdlog ke is a

(
MT ,−~s

)
-kernel basis.

4. Let R =[
Q1, Ñ1Q2, . . . , Ñdlog ke−2Qdlog ke−1, Ñdlog ke−1Qdlog ke

]
,

and Rr = colRev (R,−~s, cdeg−~sR). Then from Lemma
4.6 we can conclude that

[
FT ,Rr

]
is a unimodular ma-

trix.

Algorithm 1 unimodularCompletion(F)

Input: F ∈ K [x]m×n with full row rank; ~s is initially set to
the column degrees of F. It keeps track of the degrees.

Output: G ∈ K [x](n−m)×n such that

[
F
G

]
is unimodular.

1: ~s := cdegF;
2: Fr := rowRev (F,−~s, 0);

3: M := MinimalKernelBasis (Fr, ~s); ~b := cdeg ~sM;
k := n−m;

4: Organize
[
MT

1 ,M
T
2 , · · · ,MT

dlog ke−1,M
T
dlog ke

]
:= M,

with Mdlog ke, Mdlog ke−1, · · · , M2, M1

having ~s-row degrees in the ranges
[0, 2ξ/k] , (2ξ/k, 4ξ/k], . . . , (ξ/4, ξ/2], (ξ/2, ξ].

5: for i from 1 to dlog ke do
6: ~σi :=

[
ξ/2i−1 + 1, . . . , ξ/2i−1 + 1

]
, with the number

of entries matches the row dimension of Mi;
7: end for
8: ~σ :=

[
~σdlog ke, ~σdlog ke−1, . . . , ~σ1

]
;

9: M̂ := x~σ−
~b−1M;

10: N0 := In; Ñ0 := In;
11: for i from 1 to dlog ke do
12: ~si := −cdeg−~si−1Ni−1; (note ~s1 = ~s)

13: Pi := UnbalancedFastOrderBasis
(
M̂iÑi−1, ~σi,−~si

)
;

14: [Ni,Qi] := Pi, where Ni is a
(
M̂i,−~si

)
-kernel basis;

15: Ñi := Ñi−1 ·Ni;

16: R :=
[
R, Ñi−1Qi

]
;

17: end for
18: Rr := colRev (R,−~s, cdeg−~sR) ;

19: return (Rr)T

5.1 Computational Cost
The cost of Algorithm 1 is dominated by the kernel basis

computation, order basis computations, and the multiplica-
tions M̂iÑi−1, Ñi−1Ni, and Ñi−1Qi. From Theorem 2.5
we know the kernel basis computation can be done with a
cost of O∼ (nωs). To determine the cost of order basis com-
putations and multiplications, it is helpful to first look at
the size of ~si.

Lemma 5.5. The shifted degrees ~si = −cdeg−~sÑi−1 =
−cdeg−~si−1Ni−1satisfy

∑
~si ≤ ξ.

Proof. Recall that Ñi−1 is a −~s-minimal kernel basis of
a matrix A consists of a subset of rows of MT , which has

cdeg ~sM = ~b, or rdeg ~sM
T = ~b. Hence by Lemma 5.2∑

−~si = cdeg−~sÑi−1 ≤
∑

rdeg ~sA−
∑

~s ≤
∑

~b−
∑

~s,

which gives ∑
~si ≤

∑
~s−

∑
~b ≤

∑
~s = ξ.

Here recall that ~b = cdeg ~sM ≥ 0 since ~s ≥ 0 and ~b ≤
∑
~s

by Theorem 2.4. 2

The order basis computation UnbalancedFastOrderBasis in
Algorithm 1 uses the algorithm for computing order basis
with unbalanced shift from [13, 14].

Lemma 5.6. An
(
M̂iÑi−1, ~σi,−~si

)
-order basis can be com-

puted with a cost of O∼ (nωs).

Proof. From the construction of M̂i, the matrix M̂i and
M̂iÑi−1 have less than 2i rows, and for simplicity can be
assumed to be 2i rows by appending zero rows. We also
have σi =

⌈
ξ/2i−1

⌉
+ 1 ∈ Θ

(
ξ/2i

)
. From Lemma 5.5 we

also have
∑
~si ≤ ξ. Therefore, the conditions of Theorem

2.7 are satisfied, and Algorithm 2 from [14] for order basis
computation with unbalanced shift can be used with a cost
of O∼ (nωs). 2

Lemma 5.7. The multiplications M̂iÑi−1 can be done with
a cost of O∼ (nωs).

Proof. The dimension of M̂i is bounded by 2i × n and∑
rdeg ~sM̂i ≤ 2i · ξ/2i−1 ∈ O (ξ) .

As in the proof of Lemma 5.5 we also have cdeg−~sÑi−1 ≤ 0,
or equivalently, rdeg Ñi−1 ≤ ~s. We can now use Theorem
2.2 to multiply ÑT

i−1 and M̂T
i with a cost of O∼ (nωs). 2

Lemma 5.8. The multiplication Ñi−1Ni can be done with
a cost of O∼ (nωs).

Proof. We know cdeg−~sÑi−1 = −~si, and cdeg−~siNi =

−~si+1 ≤ 0. In other words, rdegNi ≤ ~si, and rdeg ~siÑi−1 ≤
~s. We also have

∑
~si ≤ ξ from Lemma 5.5. Hence we can

again use Theorem 2.2 to multiply NT
i and ÑT

i−1 with a cost
of O∼ (nωs). 2

Lemma 5.9. The multiplication Ñi−1Qi can be done with
a cost of O∼ (nωs).

Proof. We know

cdeg−~siQi ≤ max cdeg ~sP = 1,

or equivalently,

rdegQi ≤ ~si + 1.

But we also know that this Qi from the order basis com-
putation has a factor xI. Therefore, rdeg (Qi/x) ≤ ~si. In

addition, rdeg ~siÑi−1 ≤ ~s as before. We again have
∑
~si ≤ ξ

from Lemma 5.5. So we can again use Theorem 2.2 to mul-
tiply QT

i and ÑT
i−1 with a cost of O∼ (nωs). 2

Theorem 5.10. A unimodular completion of F can be
computed with a cost of O∼ (nωs) field operations.

6. CONCLUSION
In this paper, we have presented an efficient determinis-

tic algorithm for a unimodular completion of a matrix of
polynomnials. Our algorithm computes a unimodular com-
pletion of an input matrix F ∈ K [x]m×n, m < n with a
cost of O∼ (nωs), where s is the average of the m largest
column degrees of the input matrix. Future directions of in-
terest include efficient deterministic unimodular completion
in domains such as matrices of multivariate polynomials and
matrices of differential or, more generally, of Ore operators.

References
[1] B. Beckermann and G. Labahn. A uniform approach

for the fast computation of matrix-type Padé approxi-
mants. SIAM Journal on Matrix Analysis and Applica-
tions, 15(3):804–823, 1994.

[2] B. Beckermann and G. Labahn. Recursiveness in matrix
rational interpolation problems. Journal of Computa-
tional and Applied Math, 5-34, 1997.

[3] B. Beckermann, G. Labahn, and G. Villard. Shifted
normal forms of polynomial matrices. In Proceedings of
the International Symposium on Symbolic and Algebraic
Computation, ISSAC’99, pages 189–196, 1999.

[4] B. Beckermann, G. Labahn, and G. Villard. Normal
forms for general polynomial matrices. Journal of Sym-
bolic Computation, 41(6):708–737, 2006.

[5] T. Cluzeau and A Quadrat. Isomorphisms and Serre’s
reduction of linear systems. In Proceedings of the 8th
International Workshop on Multidimensional Systems,
2013.

[6] A. Fabianska and A. Quadrat. Applications of the
Quillen-Suslin theorem to multidimensional systems
theory. In H. Park and G. Regensburger, editors,
Radon Series on Computational and Applied Mathe-
matics, pages 23–106. Walter de Gruyter, Berlin, 2007.

[7] P. Giorgi, C.-P. Jeannerod, and G. Villard. On the
complexity of polynomial matrix computations. In Pro-
ceedings of the International Symposium on Symbolic
and Algebraic Computation, Philadelphia, Pennsylva-
nia, USA, pages 135–142. ACM Press, 2003.

[8] T.Y. Lam. Serre’s Conjecture, volume 635 of Lecture
Notes in Mathematics. Springer-Verlag, 1978.

[9] A. Logar and B. Sturmfels. Algorithms for the Quillen-
Suslin theorem. Journal of Algebra, 145:231–239, 1992.

[10] M. Newman. Integral Matrices. Springer, 1972.

[11] J. von zur Gathen and J Gerhard. Modern Computer
Algebra. Cambridge University Press, 2nd edition edi-
tion, 2003.

[12] D.C. Youla and P.F. Pickel. The Quillen-Suslin theorm
and the structure of n-dimensional elementary polyno-
mial matrices. IEEE Tranactions on Circuits and Sys-
tems, 31(6):513–518, 1984.

[13] W. Zhou. Fast Order Basis and Kernel Basis Compu-
tation and Related Problems. PhD thesis, University of
Waterloo, 2012.

[14] W. Zhou and G. Labahn. Efficient algorithms for order
basis computation. Journal of Symbolic Computation,
47:793–819, 2012.

[15] W. Zhou and G. Labahn. Computing column bases
of polynomial matrices. In Proceedings of the Interna-
tional Symposium on Symbolic and Algebraic Computa-
tion, ISSAC’13, pages 379–386. ACM, 2013.

[16] W. Zhou, G. Labahn, and A. Storjohann. Computing
minimal nullspace bases. In Proceedings of the Interna-
tional Symposium on Symbolic and Algebraic Computa-
tion, ISSAC’12, pages 375–382. ACM, 2012.

