
EUROGRAPHICS Symposium on Sketch-Based Interfaces and Modeling (2009), pp. 1–9
C. Grimm and J. J. LaViola Jr. (Editors)

Tools for the efficient generation of hand-drawn corpora
based on context-free grammars

Abstract
In this paper, a novel technique is presented for creating unbiased training and testing sets based on perform-
ing random walks using a context free grammar. We describe a study conducted to generate a corpus of over
4500 hand-drawn mathematical expressions from 20 subjects. Finally, details are given for an automated system
which generates high quality ground-truth data from the hand-drawn expressions. The techniques presented in this
paper are illustrated through the creation of a ground-truthed corpus of mathematical expressions, but they are
applicable to any sketching domain that can be described by a formal grammar.

Categories and Subject Descriptors (according to ACM CCS): I.5.5 [Computing Methodologies]: Pattern
Recognition—Implementation

1. Introduction

One challenge faced in the implementation and evaluation
of sketch recognition systems is access to realistic corpora
of ground-truthed input. Corpora are valuable in two ways.
First, they allow researchers creating recognition systems to
train their recognizers, thus improving recognition accuracy.
Second, they provide an independent data set against which
to test recognizer accuracy. To be useful in training and test-
ing, any corpus must have two attributes. It must be accu-
rately ground-truthed, both at the semantic level and at the
level of individual symbols and relations between symbols.
It must also be sufficiently large and varied to allow training
and testing on realistic input from varied drawers.

One simple approach to creating a sufficiently large cor-
pus is to manually select a set of representative sketches
from a domain of interest, have several participants tran-
scribe these sketches, and then manually ground-truth each
sketch individually. This process suffers from several draw-
backs. These drawbacks include the possibility of biased or
narrow coverage and tedium resulting from creating unique
sketches or from ground-truthing a large set of sketches. We
expand on these drawbacks here.

The process of selecting sketches is prone to bias and
narrow coverage. Problems of biased or narrow coverage
have been noted in the database and software performance
community when designing benchmarks [LC82] – arguably
an analogous task to designing corpora for recognition sys-

tems. When designing a recognition system, designers may
unintentionally select the sketches on which to test the sys-
tem based on their understanding of the strengths and weak-
nesses of their algorithm, essentially an instance of the Pyg-
malion Effect. As well, designers are typically researchers
in sketch recognition, not mathematicians, engineers, ani-
mators, etc. As a result, designers may select sketches to be
recognized based on their experience within the target do-
main, which is narrower than domain experts. For example,
having only experienced introductory calculus, a designer of
a math recognition system might not consider multi-variable
integrals as an essential component in a math recognition
system.

Whether participants transcribe the same set of sketches
or unique sketches for any corpus has an effect on training
and testing with that corpus. If some form of user-omission
is used to test, i.e. train on n-1 users and test on the remain-
ing user, then using the same sketches means that the system
has been tested on sketches (from one user), but it has expe-
rienced each of these sketches before as training data from
the other n-1 users. Leaving out sketches means the system
has been trained on that specific user’s handwriting, which
may also provide a higher than realistic performance mea-
sure. On the other hand, providing unique sketches for each
user can become tedious, particularly when a large number
of participants are desired to ensure good coverage of drawer
variability.

Finally, the process of manually ground-truthing a set of

submitted to EUROGRAPHICS Symposium on Sketch-Based Interfaces and Modeling
(2009)

2 / Tools for the efficient generation of hand-drawn corpora based on context-free grammars

sketches can prove tedious and error prone. While what con-
stitutes “sufficiently large” in the context of any corpus may
be subject to interpretation, it seems obvious that, to be of
any use in training and testing, a corpus would need to con-
tain at least several hundred or thousand sketches.

Our motivation for creating a large public corpus is our
math recognition system MathBrush. MathBrush is an ex-
perimental system for working with mathematics using pen-
based devices. The system [LLM∗08a] allows users to write
mathematical expressions as they would using a pen and
paper, and to edit and manipulate the mathematical expres-
sions. Hand-drawn math recognition systems research spans
four decades (eg. [BA69], [BCZ02], [LZ06]), and, in the ab-
sence of established corpora, it is challenging to assess the
strengths and weaknesses of the wide variety of approaches
to this problem explored in the past 40 years. Despite ex-
tensive research in hand-drawn math recognition, we are
aware of no large, publicly available, ground-truthed math
corpus for use in training and evaluation. This significant
lack has motivated our creation of such a corpus. While our
work focuses on mathematics recognition, tools for gener-
ating large, accurately ground-truthed corpora, with broad
coverage of notation, are of value to all researchers studying
sketch recognition.

In this paper, we describe our work on the generation of
a publicly available ground-truthed corpus of mathematical
expressions. The drawbacks of manual corpus creation are
addressed in several ways:

1. To avoid bias, random walks of a grammar-based math
recognizer are used to ensure coverage and variability in
our expressions.

2. To generate a large corpus, 20 participants were asked
to transcribe expressions generated by this random gram-
mar. Participants received $10 for one hour of transcrip-
tion and produced more than 4500 expressions in all.

3. To avoid the tedium of manual ground-truthing, we de-
signed a novel greedy algorithm that generates ground-
truth for symbols and relationships between subexpres-
sions with more than 90% precision.

Together, it is our hope that these contributions stimulate fur-
ther work on the creation of large, transparent, public cor-
pora for various sketch recognition domains.

This paper is structured as follows. Section 2 describes
the process of generating our ground-truthed mathematical
corpus and presents accuracy measures of our automatic
ground-truthing technique. Next, strengths and weaknesses
of our approach are discussed, and we highlight some open
areas for future research. Finally, we contrast our approach
with related work in corpus generation.

2. Creating the Mathematical Corpus

Creating a ground-truthed mathematical corpus required
three tasks. First, we created an algorithm that generates

random mathematical expressions using a relational context-
free grammar. Next, study participants transcribed generated
math expressions, producing a large collection of handwrit-
ten expressions. Finally, the handwritten expressions were
automatically ground-truthed and the effectiveness of this
process was evaluated. This section describes each of these
tasks.

2.1. Mathematical Formula Generation

To create an unbiased set of equations, we use an auto-
mated technique that performs a constrained walk through
a context-free grammar describing mathematical equations.
This approach has many advantages. First, expressions are
created based on random sampling of symbols and relation-
ships, ensuring that rare symbol combinations are reflected
in the collected data. Secondly, this approach limits biases
that a researcher may have in selecting testing data, or, at the
very least, makes the process of selecting equations some-
what transparent. Finally, this technique provides a limitless
source of equations for participants to transcribe.

Grammar-based approaches to math recognition are not
new. As mathematical expressions have strong positional se-
mantics, it is natural to use a relational grammar to describe
the structure of expressions, and to map the relationships
identified by a grammar to the semantics of a complete ex-
pression. Our approach to math recognition uses a fuzzy re-
lational context-free grammar to model the spatial structure
of handwritten math. In this section, we first describe fuzzy
relational context-free grammars, and then highlight how a
relational grammar can be used in the generation of expres-
sions.

2.1.1. Fuzzy relational context-free grammars

To capture the structure of handwritten math for recognition,
we use a fuzzy relational context-free grammar formalism.
Our work is described in detail in MacLean (2009) [Mac09].
The details are summarized below.

Recall that a fuzzy relational context-free grammar (fuzzy
r-CFG) is a tuple G = (Σ,N,S,T,R, r̃Σ,P), where

• Σ,N are sets of terminal, nonterminal symbols respec-
tively,

• S ∈ N is the start symbol,
• T is the set of observables,
• R is a set of fuzzy relations on (T,T),
• r̃Σ is a fuzzy relation on (T,Σ),
• P is a set of productions, each of the form A0 →

A1r̃A2r̃ · · · r̃An, where A0 ∈ N;n > 0;Ai ∈ Σ∪N,1 ≤ i ≤
n; r̃ ∈ R.

During recognition in our system, we take T to be the set
of all possible ink inputs, R to be the set of relations between
symbols, and r̃Σ to be the output of a symbol recognizer. Fur-
thermore, each grammar production p is associated with a

submitted to EUROGRAPHICS Symposium on Sketch-Based Interfaces and Modeling (2009)

/ Tools for the efficient generation of hand-drawn corpora based on context-free grammars 3

tree generator and a string generator. The tree generator pro-
duces an expression tree that describes how terminal sym-
bols (leaves) are combined using mathematical operations to
represent the syntax of the math expression. The string gen-
erator produces a string representation (e.g. LATEX, MathML)
of the expression tree. Fuzzy values are used to measure the
most likely spatial relationships between groups of symbols
in the hand-drawn input. They are combined with symbol
recognition results to obtain confidence scores for expres-
sion trees produced when mapping a mathematical expres-
sion onto possible derivations in the grammar.

For extensibility, the grammar and associated generators
are encoded in an external text file. For example, the follow-
ing defines the grammar production for addition:

ADD :: [AT0] <R> plus <R> [RT]
{ADD(%1 ’EXPR_LHS’, %3 ’EXPR_RHS’)}
‘%1 + %3‘ ;

In this example, on the first line, ADD is the name of the
production’s LHS nonterminal, AT0 and RT are two other
nonterminals, plus is a terminal name, and R is the relation
code for the RIGHT relation. The second and third line repre-
sent the tree and string generators, respectively. The second
line of the production, between the braces, describes a tree
with root label “ADD” with two children. The first child is
labeled “EXPR_LHS” (the left hand operand of the addition
operation) and is linked to the tree output by the tree gener-
ator for AT0. The second child is labeled “EXPR_RHS” (the
right hand operand) and is linked to the tree output by the
generator for RT. The string generator is described on line
3 (between the back ticks). As with tree generation, the %n
notation indicates where to insert the output of string gener-
ators associated with the left hand operand AT0 and the right
hand operand RT.

In our grammar, semantic content is described by the
root labels produced by tree generators. The ADD production
above therefore has semantic type ADD. Not all productions
include tree generators, however. For example, consider the
following three productions: (Pipe symbols are used on the
RHS to separate distinct productions.)

RT :: [ADD] | [SUB] | [AT0] ;

The nonterminal symbol RT simply represents a collec-
tion of expression types with the same level of precedence,
in this case, addition, subtraction, and an isolated addition
term.

In this example, each of the three nonterminals that the
symbol RT can produce have distinct semantic types. RT it-
self does not have a fixed semantic type. Rather, it inher-
its the expression tree (and hence the semantic type) given
by the tree generator for the single nonterminal it produces
in a particular derivation step. Unlabelled nonterminals like
RT can therefore represent different semantic types in differ-
ent contexts. Unlabelled nonterminals can derive other unla-

belled nonterminals, so the semantic types they can assume
are not always immediately apparent from their productions.

2.1.2. Random derivations

A random expression generator must balance two proper-
ties to be useful. It must generate samples typical of math
expressions written on tablet computers (so that machine
learning algorithms have a representative training set. It must
also generate as many combinations as possible of bound-
ing box shapes and relative positions (so that algorithms can
be trained on low-probability spatial relationships). How-
ever, only a relatively small number of examples can be col-
lected from any subject. In our experience, approximately
225 equations can be written by a subject in a one hour
session. As a result, there exists a tradeoff between accu-
rately representing the frequency of various mathematical
relationships and providing a broad enough coverage of var-
ious mathematical relationships to fully train and test a rec-
ognizer. Our approach opts for broader coverage at the ex-
pense of reflecting the true frequency with which particular
mathematical relationships occur in real-world expressions.
This means, for example, that in our generated expressions,
exponents, subscripts, and fractions are more common than
one would normally encounter.

Random expressions are generated using the r-CFG for
mathematical expressions described above. Fuzzy relation-
ship values are not relevant when using a grammar to gen-
erate expressions. The essential idea of generating a ran-
dom equation is quite basic: given a current symbol, choose
a grammar production arbitrarily and recurse on each non-
terminal in the RHS. However, care must be taken to avoid
three problems:

1. Recursing blindly may lead to extremely large expression
generation. Expression length must be constrained since
the expressions are to be transcribed by human users.

2. Our recognition grammar is designed to reflect normal
operator precedence; however, lower-precedence opera-
tions have shorter derivation distance from the start sym-
bol than higher-precendence operations. In other words,
choosing productions at random would give a biased set
of expressions with lower-precedence operations over-
represented.

3. Ascender (e.g. upper-case symbols, some lower-case
symbols such as ‘b’), descender (e.g. ‘p’), and base-
line (e.g. ‘a’, ‘o’) symbols provide different bounding
box profiles for relationships. We must ensure that no
type of symbol (ascender, descender, baseline) is over-
represented in spatial relationships.

To limit expression length, we introduce a parameter 0 <
pinc ≤ 1. The algorithm begins with p = 0. Instead of simply
choosing a production, it draws x from a uniform distribution
on [0,1]. If x < p, a derivation leading to a single terminal
symbol is selected if possible; otherwise p is incremented
by pinc, a random production is selected, and the algorithm

submitted to EUROGRAPHICS Symposium on Sketch-Based Interfaces and Modeling (2009)

4 / Tools for the efficient generation of hand-drawn corpora based on context-free grammars

recurses. This process does not guarantee a maximum ex-
pression size, but, by varying the value of pinc, we can con-
trol the expected output size while still allowing a degree of
variability in expression length.

To ensure that low-precedence operations are not over-
represented, note that each precedence level is represented
by a single unlabelled nonterminal such as RT from the sec-
ond example in section 2.1.1. If the algorithm reaches a non-
terminal which can derive multiple semantic meanings, it se-
lects a meaning at random, derives the nonterminal having
that meaning, and recurses. Otherwise, it selects a random
production and proceeds as above. This modification gives
a uniform distribution over the various mathematical opera-
tions supported by the grammar.

Finally, to obtain broader coverage of relative bounding
box positions, the Latin and Greek letter symbols in the
grammar were grouped into classes based on their charac-
teristic shape with respect to a baseline (ascender, descen-
der, baseline). The grammar was modified so that each class
is produced by a single non-terminal. In this way, we ob-
tained a uniform distribution over symbol shapes rather than
symbols.

Below are two examples of expressions generated by the
above process.

[
B
7

]N+6

β+
z−L (v)√

s

Z
24dXh

Figure 1: Generated expressions

2.1.3. Output formats

The algorithm sketched above generates random derivations
from a grammar. Using the tree generator, one can produce
and serialize parse trees for use in recognizer testing. Using
the string generator, one can generate LATEX strings, which
can be converted to images and displayed to subjects for
transcription. Strings representing generated expressions for
use in a computer algebra system such as Maple or Mathe-
matica can also be generated. The latter is particularly useful
for automatically evaluating recognizer accuracy via simple,
built-in arithmetic. These structures are generated for each
randomly-derived expression.

The algorithm also creates a derivation string de-
scribing the spatial layout generated by the deriva-
tion. For example, suppose the expression 2 + ma +
b
3 is generated. The corresponding derivation string
is 2 _R_ plus _R_ (m _AR_ a) _R_ plus _R_
(b _B_ horzline _B_ 3). Here the parentheses in-
dicate nested subexpressions and the underscores de-
limit relation codes (_R_=RIGHT, _AR_=ABOVE-RIGHT,
B=BELOW). The derivation strings are used to guide the
automatic ground-truthing process which we will described
in section 2.3.

2.1.4. Supplementary expressions

In order to obtain training data for more common expres-
sions and to accomodate subjects’ expectations for tran-
scribing math equations, 53 common expressions were pre-
pared for transcription. For these expressions, the parse
trees, LATEX strings, and derivation strings were written by
hand. An example of a prepared expression appears in Fig-
ure 2. Common expressions were interspersed with random
derivations during transcription. Including a set of common
expressions adds value to the corpus. The corpus comprises
unique expressions as well as multiple samples of a single
expression.

−b+
√

b2−4ac
2a

Figure 2: A prepared expression

2.2. Data Collection

Twenty undergraduate students from the University of Wa-
terloo participated in our study. Nineteen participants had
high mathematical literacy (were in the Faculty of Math or
Engineering) and one, from the Faculty of Arts, had mod-
est mathematical literacy. Participants were recruited using
posters and were given a $10 gift certificate in exchange for
transcribing mathematical expressions for a one-hour ses-
sion.

Data was collected using various models of Tablet PC’s
running custom collection software using the Microsoft Ink
SDK under Windows XP. A screen shot of our data col-
lection software is shown in Figure 3. The equations that
participants were asked to transcribe consisted of automati-
cally generated expressions. As well, 53 prespecified expres-
sions, as described in section 2.1, were included in the first
150 expressions drawn by each participant. The software
collected position, time and pressure information for each
stroke drawn. Examples of typical transcribed equations are
shown in Figures 4 and 5.

Each session was organized as follows. Participants were
seated at a table in an ergonomic office chair in a private
room. A Tablet PC was placed in front of them displaying the
transcription interface shown in Figure 3. The functionality
of the interface was described to participants and demon-
strated by the researcher conducting data collection. Partic-
ipants were asked to draw expressions presented at the top
of the screen and then click ‘Next’ to generate a new expres-
sion. They could also click ‘Clear’ to clear the display and
redo an expression. Participants were asked to write as legi-
bly as they would on an assignment they would hand in for
grading. Finally, participants were told that if they did not
recognize a symbol, or were unsure how to draw a symbol,
they could either ask for help or skip the expression.

As can be expected in such a study, a number of samples

submitted to EUROGRAPHICS Symposium on Sketch-Based Interfaces and Modeling (2009)

/ Tools for the efficient generation of hand-drawn corpora based on context-free grammars 5

Figure 3: Our collection software in action.

Figure 4: A hand-drawn, randomly generated expression.

were discarded. Our basic discard policy was that if an equa-
tion was incomplete or illegible to a human expert, it was
discarded. An example of a discarded equation is shown in
figure 6. We felt it was unreasonable to expect an automated
system to correctly infer the expected equation if a human
expert was unable to do the same.

In all, 5119 hand-drawn expressions were collected from
20 users. Of these, 109 were blank and 355 were illegi-
ble, resulting in 4655 valid hand-drawn expressions. Within
these equations there were 25963 symbols drawn and 21264
relationships between subexpressions. The next section de-
scribes the process by which ground-truth was established
for these expressions.

2.3. Automatic Ground-Truth Generation

When generating a corpus of ground-truthed data to train
and/or validate recognition systems, it is convenient to use
a program to automatically ground-truth at least part of the
collected data. An obvious argument against this approach is
that one needs a recognition system to generate the ground-
truth data. The ground-truth annotations produced by the

Figure 5: A hand-drawn, predetermined expression.

Figure 6: A discarded, illegible equation.

first recognizer are then used to train a second, new recogni-
tion system. With this approach, any new recognition system
is constrained by the recognition system used to generate the
initial ground-truth data. If the initial recognition system is
less accurate that the new recognition system, there is no
way to measure recognizer improvement without manually
annotating the testing corpus with ground-truth.

One way to overcome the disadvantages associated with
manual ground-truthing is to have available additional data
associated with a hand-drawn candidate expression. In our
experiment, we have this data available: we computation-
ally generated a candidate expression, including data repre-
senting its expression tree and its string representation, and
then asked our participants to transcribe these expressions.
Ground-truthing is, therefore, a tightly-constrained recog-
nition task consisting of matching the symbol labels in the
derivation string to groups of strokes in a handwriting sam-
ple. As a result of the additional constraint on possible rec-
ognizer output, a weak recognition engine should generate
useful ground-truth.

2.3.1. Algorithm

We devised a naive greedy algorithm for matching strokes
to derivation strings. The algorithm uses a symbol rec-
ognizer and spatial relation classifiers trained on a small
bootstrap data set which was manually annotated with
ground-truth. This bootstrap data is independent of our
main corpus and was obtained by having several re-
searchers in our group draw a small set of equations.
The ground-truthing algorithm is based on an inaccu-
rate but somewhat useful heuristic: given a derivation
string, remove all the parentheses and match the deriva-
tion string to sketched equation symbol by symbol. For ex-
ample, the derivation string in section 2.1.3 is interpreted
as 2 _R_ plus _R_ m _AR_ a _R_ plus _R_ b
B horzline _B_ 3.

The algorithm considers a derivation string of the form
S0r1S2r2 . . .rnSn where the Si are names of terminal symbols
and the ri are any of the spatial relations. Given such a string,
suppose the algorithm is currently matching Sm and has
assigned the current partial ground-truth derivation a score,
z, computed as the product of local relation and symbol
recognition confidences on the prefix S0r1 . . .rm−1Sm−1.

submitted to EUROGRAPHICS Symposium on Sketch-Based Interfaces and Modeling (2009)

6 / Tools for the efficient generation of hand-drawn corpora based on context-free grammars

Local confidences are computed by multiplying relation and
symbol recognition confidences. The algorithm proceeds as
follows:

Order all possible occurrences of Sm in the input ink in
decreasing order of confidence
for each occurrence do

Let c be the local confidence at rmSm
Remove recognition results for the relevant input
Recurse at Sm+1 with score zc
if a viable match was found then

return the match
else

Replace the symbol recognition results
end if

end for
return failure

This algorithm may take exponential time to report failure
in the worst case. During testing the algorithm was stopped
if it had not reported a match after two minutes.

2.3.2. Results

To test the accuracy of our algorithm, the entire corpus of
4655 expressions was annotated manually. Automatically-
annotated data was then compared to the manually-
annotated data using two scenarios.

1. The algorithm described in Section 2.3.1.
2. Pre-training the symbol recognizer for each user on ap-

proximately 20% of their input data, selected randomly,
and then running the algorithm from Section 2.3.1.

Scenario 2 was introduced because the algorithm fre-
quently failed when it could not match a hand-drawn symbol
to a symbol in the specified input string. The second scenario
ensures that the symbol recognizer has the greatest possible
chance to match user-drawn symbols against symbols in the
generated expression tree.

For each scenario, three accuracy measurements are re-
ported, normalized to give percentages:

1. Full expression. In this measurement, an annotated sam-
ple is considered correct if all symbols and relations
are correctly annotated and all subexpression bounding
boxes exactly match their counterparts in the manually-
annotated ground-truth.

2. Exact bounding-box. This measurement concerns indi-
vidual relations arising from the randomly-generated
derivation. A relation between any two subexpressions
is considered correct if its constituent symbols are cor-
rect and the automatically-annotated bounding boxes of
both subexpressions exactly match their counterparts in
the manually-annotated ground-truth.

3. Bounding-box similarity. This measurement also also
concerns individual relations. In it, each relation is as-
signed a score between 0 and 1. The score is computed by

averaging bounding-box similarity measurements from
each of the automatically-annotated relation’s constituent
subexpressions to their counterparts in the manually-
annotated ground-truth. We define bounding-box similar-
ity as the ratio of the area of intersection of the two boxes
to the area of the larger box. Two boxes thus have sim-
ilarity 0 if they are disjoint and similarity 1 if they are
identical with a range of possible values in between.

These three measurements are defined in increasing or-
der of permissiveness of match. Full expression accuracy re-
quires every symbol, relation, and bounding box in an entire
sample to be annotated precisely the same as in the man-
ual ground-truth, while bounding-box similarity accuracy al-
lows symbol bounding boxes to disagree slightly but still
count as a close match.

The ground-truthing algorithm produces highly accurate
ground-truth for hand-drawn input when compared to man-
ual ground-truth, as shown in Figure 7. For scenario 1,
the algorithm achieved 90% full expression accuracy. Ex-
act bounding-box accuracy was 93.6% and overlap accuracy
was 97.7%. The accuracy rates for scenario 2 are about the
same. The error bars in the graph indicate the algorithm’s
accuracy on the data of the most- and least- accurately anno-
tated subjects.

Scenarios 1 and 2 differ significantly in their reject rates.
The algorithm either produces highly-accurate ground-truth
or rejects the entire expression. For scenario 1, the reject rate
was 55.1%, while for scenario 2, it dropped to 46.5%. This
reject rate will be discussed in more detail in section 3.

The most appropriate measure of annotation accuracy de-
pends on one’s application. If annotated data is used to train
spatial relation classifiers on bounding box information, it
is appropriate to count similar, but not identical, bounding-
box annotations as partially correct because they may still
provide useful training data. On the other hand, if one uses
automatically-generated ground-truth to test the accuracy of
an isolated symbol recognition system, then full expression
or exact bounding-box accuracy may be a more appropriate
measurement.

3. Discussion

Our automatic ground-truthing method has a high accuracy
rate but also suffers from a high reject rate. It is important to
note that the accuracy of this annotation technique remained
high through all experiments. While it would be preferable
to maintain accuracy with a lower reject rate, the present al-
gorithm is far more useful than it would be if both accuracy
and reject rates were lower. Accurately ground-truthing even
half of a large corpus automatically would obviate a signifi-
cant amount of manual annotation.

It is not clear how to further reduce the rejection rate of the
ground-truthing algorithm. In scenario 1, described in 2.3.2,

submitted to EUROGRAPHICS Symposium on Sketch-Based Interfaces and Modeling (2009)

/ Tools for the efficient generation of hand-drawn corpora based on context-free grammars 7

Figure 7: Automatic annotation accuracy

a number samples were rejected due to symbol classification
errors. The errors arose because the generic models in the
symbol classifier differed from particular users’ handwriting
styles. By pre-training on 20% of samples, the rejection rate
was reduced from 55.1% to 46.5%, as is shown in the results
of scenario 2. However, experiments pre-training the symbol
recognizer on a larger proportion of samples did not demon-
strate significant improvement.

One approach to lowering the reject rate is to incorpo-
rate manual intervention directly into the ground-truthing
application. In cases currently rejected due to low recogni-
tion scores, an operator could manually annotate the problem
symbols and let the automatic procedure handle the rest. We
expect such an approach would handle the majority of the
cases rejected by the current system while requiring only
a fraction of the time required for full manual annotation.
Other approaches to reducing the reject rate may also be pos-
sible. Our corpus includes the entire set of expressions, and
other researchers are free to experiment with algorithms to
perform symbol identification and subexpression relation as-
signment.

The template expressions transcribed by study partici-
pants were generated by uniform random sampling of gram-
mar derivations. We intended for this approach to prevent
researcher bias from affecting our sample selection. If one
believes that any selection of samples for a corpus is bi-
ased, our approach, at the very least, makes the selection
of ground-truth expressions transparent. We did not control
the selection of expressions to ensure coverage of structures
well-recognized by our system. We also had no control over
the frequency with which different spatial relationships ap-

peared in our corpus. Our method of generating expressions
ensured that we did not unintentionally bias our samples to-
ward (or away from) symbols or relations which are recog-
nized more accurately than others.

Using a context-free grammar to generate expressions al-
lows for future expansion and enhancement of the corpus.
Creating additional samples for more subjects to transcribe
is completely automated. Expanding the corpus to cover new
classes of expressions or symbols, such as those used in set
theory for example, is equally trivial. Rather then manually
creating hundreds or thousands of new templates, a few addi-
tions to the grammar allow for a virtually unlimited number
of new templates drawn from the newly added class.

It is interesting to note that in order to verify our accu-
racy claims, we manually ground-truthed the entire corpus.
Unfortunately, with any new technique, some measure of its
effectiveness is necessary. In this case, to test how well we
could ground-truth data, we needed ground-truthed data to
compare our algorithm to! However, we now have the con-
fidence that, should we expand our corpus, we can automate
the ground-truthing and still expect high accuracy in the data
we generate.

Upon review of our data collection techniques we have
some observations that may be relevant to other researchers.
Some participants had data entry errors which could have
been prevented if they had asked for guidance. The hand-
writing in users’ first few transcriptions was often shaky due
to lack of experience using Tablet PCs. Users sometimes left
expressions blank or incomplete. Some users were unfamil-
iar with the shapes of certain Greek letters and copied the
typeset representation. In future studies we will likely in-
spect each participant’s data after a few samples and offer
suggestions.

We believe the techniques and results presented in this pa-
per have implications beyond mathematical expression gen-
eration and are applicable to any sketch recognition domain
where the domain can be expressed by a formal grammar. In
domains such as chemistry modeling, UML diagramming,
military course of action diagrams, or electric circuits, it
is possible to generate large collections of examples and
ground-truth using random walk and ground-truthing tech-
niques similar to those we have used.

4. Related Work

We are not aware of any work on tools and algorithms to
aid in the generation and automatic ground-truthing of large,
varied on-line sketch corpora. However, OCR researchers
have developed several techniques for automatically gener-
ating ground-truthed training and testing data. These tech-
niques generally either generate perfectly ground-truthed
synthetic data (eg. [HBAT07], [OP00]), or match real in-
puts to separate ground-truth created by hand, potentially
with mistakes in both matching and ground-truthing (eg.

submitted to EUROGRAPHICS Symposium on Sketch-Based Interfaces and Modeling (2009)

8 / Tools for the efficient generation of hand-drawn corpora based on context-free grammars

[BSB08]). Occasionally aspects of both approaches are com-
bined as in [KBNJ06].

Our techniques for generating and ground-truthing data
have much in common with both approaches, but also has
some important differences. Synthetic data is generated as in
the first approach, but this data is intended to be transcribed
by human users. Real input is matched to ground-truth, but
this ground-truth is automatically generated and free from
errors. By decoupling expression generation from ground-
truth generation, we are free to experiment with algorithms
for each task separately.

As noted in the introduction, research in handwritten
mathematics recognition has been ongoing for decades and
the field is still an active area of research. It is becoming
standard practice to study accuracy and usability by ask-
ing participants to transcribe a collection of expressions, as
in [LaV07], [SNA99], and [LLM∗08b]. However, we are not
aware of any large corpora of handwritten mathematical ex-
pressions. Most studies have collected a modest set of prede-
termined expressions, making it difficult to predict the rec-
ognizer’s capacity to generalize to more varied expression
sets.

Among the papers cited above there is substantial vari-
ation in the size of the testing suite, the number of partic-
ipants, the types of expressions, and the number of recog-
nized symbols. Furthermore, there are differences in the cri-
teria used to determine correctness. Is an expression correct
if all the symbols are recognized correctly? If the system in-
fers the correct expression despite misclassified symbols? If
a recognizer produces multiple interpretations, must the first
result be correct? If not, how many incorrect interpretations
are tolerable?

5. Conclusions

In this paper, we described a technique for generating
unique mathematical expressions by randomly constructing
a context-free grammar derivation. Our procedures for col-
lecting hand-drawn expressions were discussed, and a novel
technique for automatically generating ground-truth was
presented. Although these techniques were demonstrated by
building a large corpus of hand-drawn mathematical expres-
sions, the methods can be applied to any sketch recognition
domain that can be described by a formal grammar.

The mathematical corpus described in this paper will be
made publicly available at the URL:

http://www.cs.uwaterloo.ca/scg/MathBrush/mathdata/

We hope that other researchers will find the data useful
not only to aid in the development of their own character
or math recognition systems, but also to facilitate compar-
ison between systems. For a comparison to be meaningful,
there should exist a common, transparent, and unbiased set
of equations, consistent separation of the training data from

the testing data and similar criteria for determining accuracy.
We have therefore also suggested possible partitions of the
data into training and testing sets.

References
[BA69] BLACKWELL F. W., ANDERSON R. H.: An on-line sym-

bolic mathematics system using hand-printed two-dimensional
notation. In Proceedings of the 1969 24th national conference
(New York, NY, USA, 1969), ACM, pp. 551–557.

[BCZ02] BLOSTEIN D., CORDY J. R., ZANIBBI R.: Applying
compiler techniques to diagram recognition. In ICPR ’02: Pro-
ceedings of the 16 th International Conference on Pattern Recog-
nition (ICPR’02) Volume 3 (Washington, DC, USA, 2002), IEEE
Computer Society, pp. 127–130.

[BSB08] BEUSEKOM J. V., SHAFAIT F., BREUEL T. M.: Auto-
mated ocr ground truth generation. In Document Analysis Sys-
tems, 2008. DAS ’08. The Eighth IAPR International Workshop
on (Sept. 2008), pp. 111–117.

[HBAT07] HEROUX P., BARBU E., ADAM S., TRUPIN E.: Auto-
matic ground-truth generation for document image analysis and
understanding. In Document Analysis and Recognition, 2007.
ICDAR 2007. Ninth International Conference on (Sept. 2007),
vol. 1, pp. 476–480.

[KBNJ06] KUMAR A., BALASUBRAMANIAN A., NAMBOODIRI
A., JAWAHAR C.: Model-Based Annotation of Online Handwrit-
ten Datasets. In Tenth International Workshop on Frontiers in
Handwriting Recognition (Oct. 2006), Guy Lorette, (Ed.), Uni-
versité de Rennes 1, Suvisoft.

[LaV07] LAVIOLA JR. J. J.: An initial evaluation of a pen-based
tool for creating dynamic mathematical illustrations. In SIG-
GRAPH ’07: ACM SIGGRAPH 2007 courses (New York, NY,
USA, 2007), ACM, p. 47.

[LC82] LEVY H. M., CLARK D. W.: On the use of benchmarks
for measuring system performance. SIGARCH Comput. Archit.
News 10, 6 (1982), 5–8.

[LLM∗08a] LABAHN G., LANK E., MACLEAN S., MARZOUK
M., TAUSKY D.: Mathbrush: A system for doing math on pen-
based devices. The Eighth IAPR Workshop on Document Analy-
sis Systems (DAS) (Sep 16-19 2008).

[LLM∗08b] LABAHN G., LANK E., MARZOUK M., BUNT A.,
MACLEAN S., TAUSKY D.: Mathbrush: A case study for in-
teractive pen-based mathematics. Fifth Eurographics Workshop
on Sketch-Based Interfaces and Modeling (SBIM) (June 11-13
2008).

[LZ06] LAVIOLA J., ZELEZNIK R.: Mathpad2: a system for
the creation and exploration of mathematical sketches. In SIG-
GRAPH ’06: ACM SIGGRAPH 2006 Courses (New York, NY,
USA, 2006), ACM Press, p. 33.

[Mac09] MACLEAN S.: Parsing handwritten mathematics. Mas-
ter’s thesis, David R. Cheriton School of Computer Science, Uni-
versity of Waterloo, 2009.

[OP00] OKUN O., PIETIKAINEN M.: Automatic ground-truth
generation for skew-tolerance evaluation of document layout
analysis methods. In Pattern Recognition, 2000. Proceedings.
15th International Conference on (2000), vol. 4, pp. 376–379
vol.4.

[SNA99] SMITHIES S., NOVINS K., ARVO J.: A handwriting-
based equation editor. In Graphics Interface (1999), pp. 84–91.

submitted to EUROGRAPHICS Symposium on Sketch-Based Interfaces and Modeling (2009)

