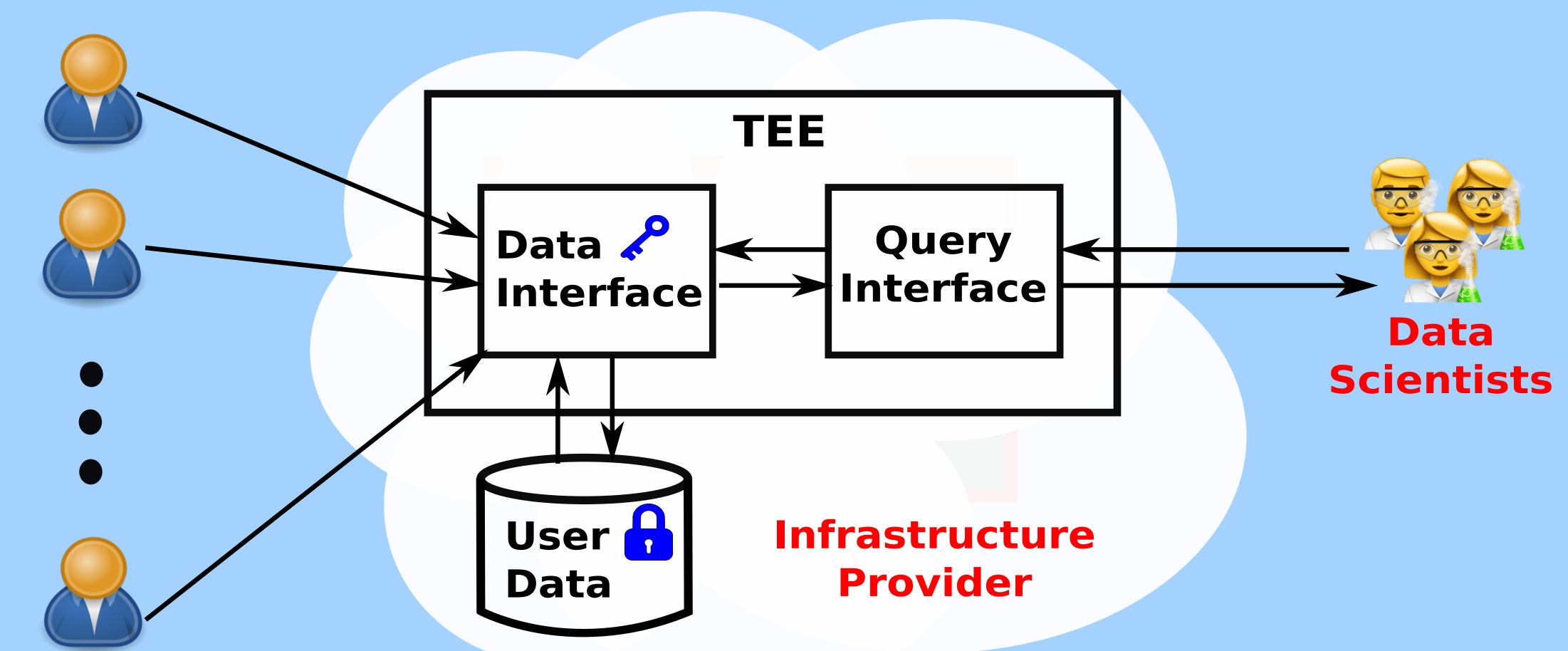
Oblivious Sampling Algorithms for Private Data Analysis

Sajin Sasy and Olga Ohrimenko

Contributions

- Introduce Private Sampling-Based Query Framework
- Take advantage of Differential Privacy and Privacy Amplification from sampling
- Design secure sampling for hiding sample identity: oblivious sampling
- Design efficient dataset sampling algorithms
- Experimental evaluations of accuracy of machine learning models trained with minibatches produced by sampling instead of shuffling

Threat Model / Framework Architecture



Goal & Motivation

- Enable data scientists to query data while providing strong privacy guarantees on user data.
- Trusted Execution Environments (TEE) restricts data access and protects data while its computed upon.
- TEEs can leak data access patterns which lead to privacy loss.

Privacy via Sampling and Differential Privacy

Consider a randomized mechanism \mathcal{M} that is $(\boldsymbol{\epsilon}, \boldsymbol{\delta})$ -DP, and a mechanism \mathcal{M}' that uses samples of size m from a dataset with n elements using any of the following methods:

- 1) Sampling without Replacement (SWO)
- 2) Poisson Sampling
- 3) Shuffle-based Sampling

Informally, *Privacy Amplification of Differential Privacy* states that \mathcal{M}' with SWO or Poisson sampling provides an order of $O(\sqrt{m/n})$ smaller epsilon than the popularly used Shuffle-based sampling.

Samples must be hidden for privacy amplification results to hold!

Algorithm for Oblivious Sampling Without Replacement (SWO)

Input: A dataset (D) of n records

A B C D E F

n, m

For i = [1, k]:

Test&Replicate(i,j)

Test &

Replicate (1, 1)

BD

1 2 3 4 5 6

Oblivious

Shuffle the array without memory access patterns

leaking any information about the output permutation

Instantiate k permutations of n using Pseudo Random

Permutations (PRP), effectively contributing the

indices for the sample.

A D F C E B

1 2 3 4 5 6

A D F C E B

1 2 3 4 5 6

k iterations of Test & Replicate for index j

produces a copy of j for every sample it appears

in. Each copy is created with its sample index.

This tool checks if sample i,

contains key at index j with the

NOTE: All the

elements and

sample indices

are encrypted

by the TEE and

only in clear in

private

memory which

is not visible to

the adversary.

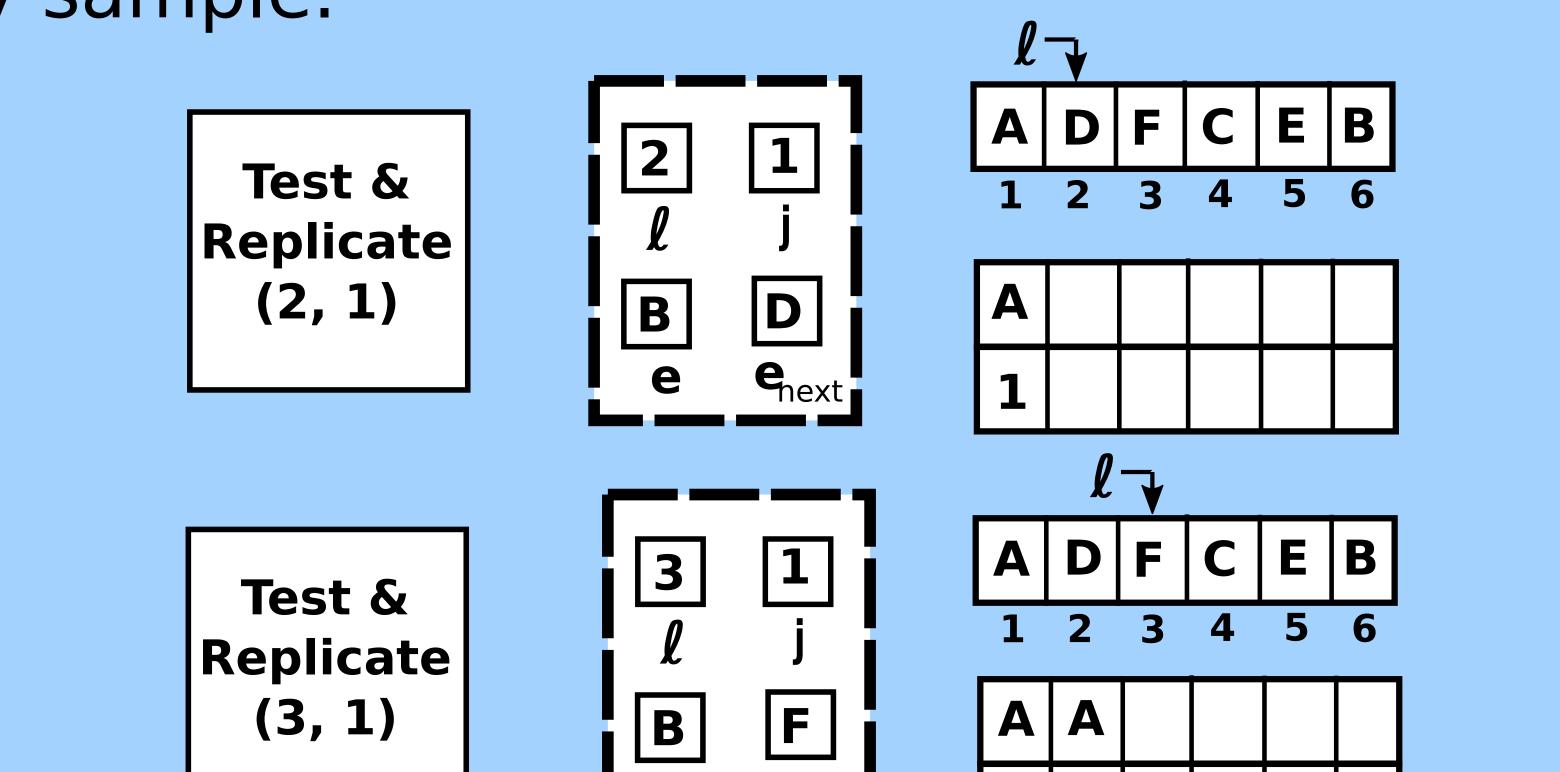
PRPs generated with Initialize

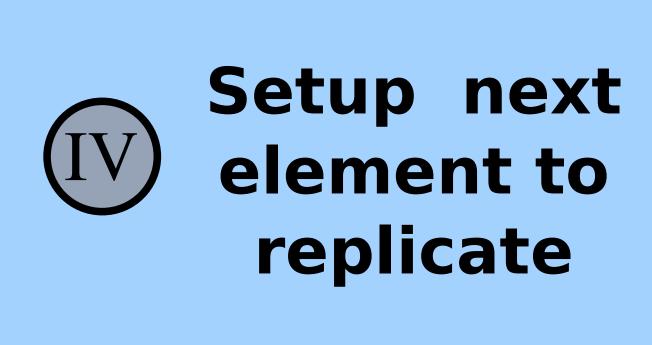
and replicates the key if true.

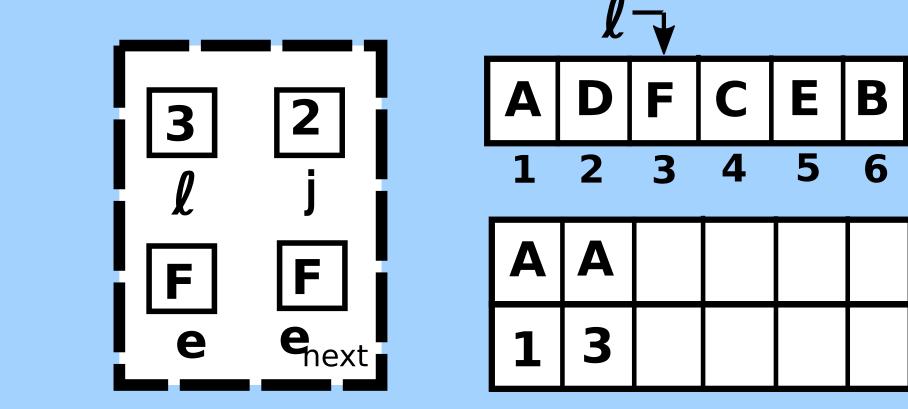
Initialize

Goal: Obtain samples of size m. (m=2) **Output:** k = n/m samples of size m from D. (k=3)

Memory access patterns of the algorithm execution should not reveal any information about the elements in any sample.

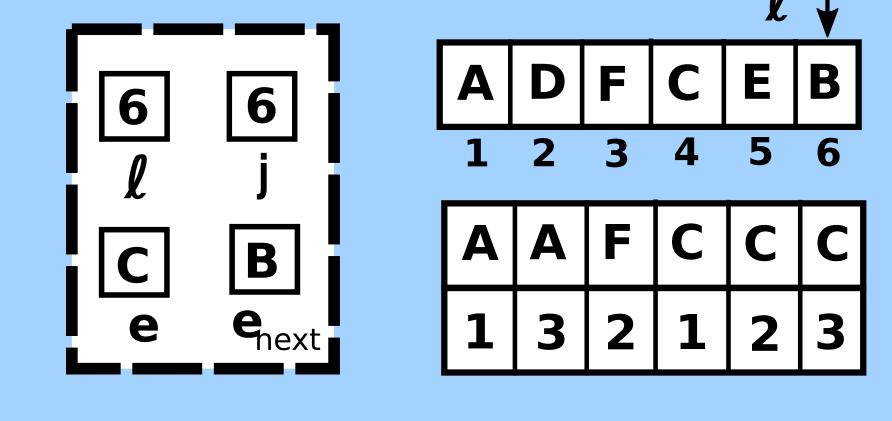


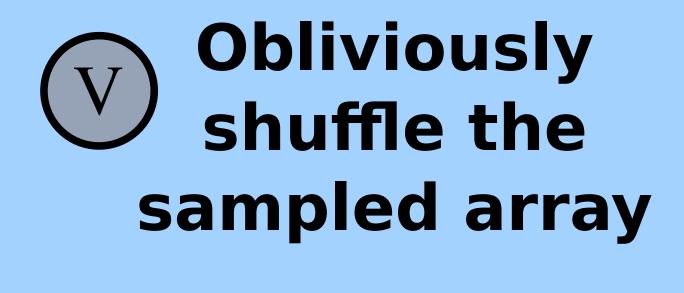


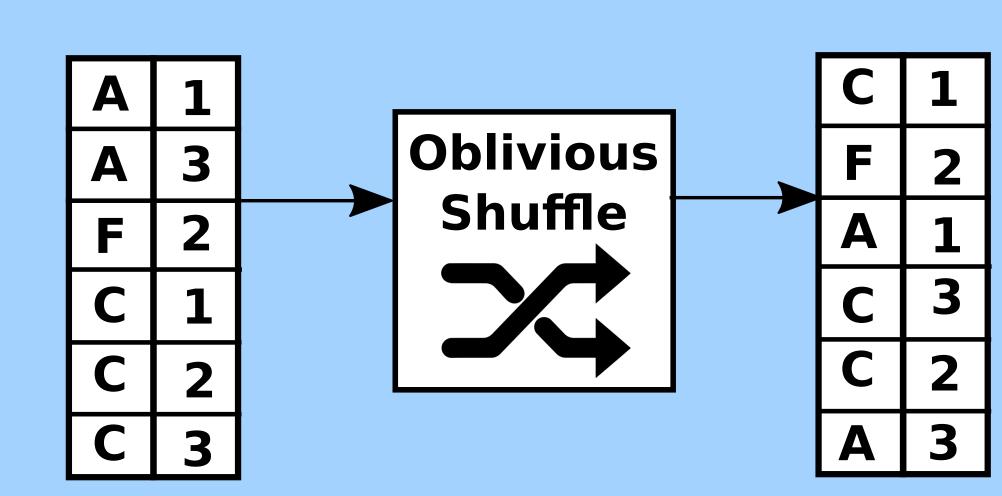


F A B F A F

1 2 3 4 5 6

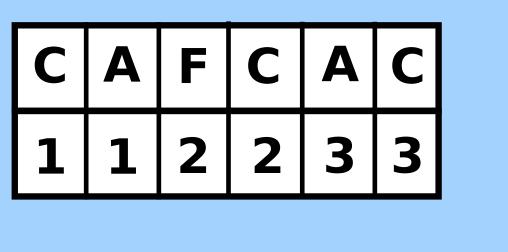






This shuffle breaks the correlation of which elements go to which samples.

Decrypt and sort by the sample indices



Algorithm Correctness

We prove that the algorithm returns samples of size m drawn truly randomly from the n elements, upto an injective and random key mapping.

Experimental Results

	Shuffle	SWO	Poisson
MNIST	97.50 (98.33)	97.43 (98.31)	97.47 (98.31)
DP MNIST	94.06 (94.10)	94.03 (94.05)	94.10 (94.01)
ϵ	9.39	2.13	0.82

CIFAR-10	79.6 (83.2)	79.0 (82.9)
DP CIFAR-10	73.4 (72.3)	72.5 (71)
$\boldsymbol{\epsilon}$	9.39	4.89

Full Paper

- Oblivious Poisson sampling algorithm
- Security analysis
- More-detailed experiments

For more information: ssasy@uwaterloo.ca oohrim@microsoft.com

