
Consider a randomized mechanism 𝓜  that is (𝝐,𝛅)-DP, and a 
mechanism 𝓜' that uses samples of size m from a dataset with 
n elements using any of the following methods:
1) Sampling without Replacement (SWO) 
2) Poisson Sampling
3) Shuffle-based Sampling 
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Informally, Privacy Amplification of Differential Privacy states that 
𝓜' with SWO or Poisson sampling provides an order of O(        ) 
smaller epsilon than the popularly used Shuffle-based sampling.

√m/n

Algorithm for Oblivious Sampling Without Replacement (SWO)

Input : A dataset (D) 
of n records

Output : k = n/m samples 
of size m from D. (k=3)

Goal: Obtain samples of size m. (m=2)
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Constraint: Hide sample identity. 
Memory access patterns of the algorithm 
execution should not reveal any information 
about the elements in any sample. 

F A F

1 2 3 4 5 6

ℓ
A D F C E B

ℓ

Oblivious Sampling Algorithms for Private Data Analysis
Sajin Sasy and Olga Ohrimenko

Enable data scientists to query data while providing strong 
privacy guarantees on user data. 
Trusted Execution Environments (TEE) restricts data access and 
protects data while its computed upon.
TEEs can leak data access patterns which lead to privacy loss.
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Privacy via Sampling and Differential Privacy

Samples must be hidden for 
privacy amplification results to hold!

Oblivious Poisson sampling algorithm
Security analysis
More-detailed experiments

For more information:
ssasy@uwaterloo.ca    oohrim@microsoft.com

Threat Model / Framework Architecture 
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Algorithm Correctness
We prove that the algorithm returns samples of size m drawn 
truly randomly from the n elements, upto an injective and 
random key mapping.
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This tool checks if sample i, 
contains key at index j with the 
PRPs generated with Initialize 
and replicates the key if true.

Contributions
Introduce Private Sampling-Based Query Framework
Take advantage of Differential Privacy and Privacy Amplification 
from sampling
Design secure sampling for hiding sample identity: oblivious 
sampling
Design efficient dataset sampling algorithms
Experimental evaluations of accuracy of machine learning 
models trained with minibatches produced by sampling instead
of shuffling
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k iterations of Test & Replicate for index j 
produces a copy of j for every sample it appears 
in. Each copy is created with its sample index. 

NOTE: All the 
elements and 
sample indices 
are encrypted 
by the TEE and 
only in clear in 

private 
memory which 
is not visible to 
the adversary.

Instantiate k permutations of n using Pseudo Random 
Permutations (PRP),  effectively contributing the 

indices for the sample.

Shuffle the array without memory access patterns 
leaking any information about the output permutation

This shuffle breaks the correlation of 
which elements go to which samples.


