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One of the most celebrated results of computing join-aggregate queries defined over commutative semi-rings

is the classic Yannakakis algorithm proposed in 1981. It is known that the runtime of the Yannakakis algorithm

is 𝑂p𝑁 ` OUTq for any free-connex query, where 𝑁 is the input size of the database and OUT is the output

size of the query result. This is already output-optimal. However, only an upper bound 𝑂p𝑁 ¨ OUTq on the

runtime is known for the large remaining class of acyclic but non-free-connex queries. Alternatively, one can

convert a non-free-connex query into a free-connex one using tree decomposition techniques and then run

the Yannakakis algorithm. This approach takes𝑂
`

𝑁 #fn-subw ` OUT

˘

time, where #fn-subw is the free-connex
sub-modular width of the query. But, none of these results is known to be output-optimal.

In this paper, we show a matching lower and upper bound Θ
´

𝑁 ¨ OUT1´ 1

fn-fhtw ` OUT

¯

for computing

general acyclic join-aggregate queries by semiring algorithms, where fn-fhtw is the free-connex fractional
hypertree width of the query. For example, fn-fhtw “ 1 for free-connex queries, fn-fhtw “ 2 for line queries

(a.k.a. chain matrix multiplication), and fn-fhtw “ 𝑘 for star queries (a.k.a. star matrix multiplication) with 𝑘

relations. Although free-connex fractional hypertree width is a natural and well-established measure of how far

a join-aggregate query is from being free-connex, we demonstrate that it precisely captures the output-optimal

complexity of these queries. To our knowledge, this has been the first polynomial improvement over the

Yannakakis algorithm in the last 40 years and completely resolves the open question of computing acyclic

join-aggregate queries in an output-optimal way. As a by-product, our output-optimal algorithm for acyclic

queries also yields new output-sensitive algorithms for cyclic queries via tree decomposition techniques.
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1 INTRODUCTION
Join-aggregate queries defined over commutative semi-rings have wide applications in data an-

alytical tasks. For example, join-aggregate queries over Boolean semiring can capture the CNF

satisfiability problem, the 𝑘-colorability problem on graphs, the Boolean conjunctive query [2], the

constraint satisfaction problem, and the list recovery problem in coding theory [28]. As another

example, join-aggregate queries over sum-product semiring have been widely used in complex

network analysis (such as clustering coefficients and transitivity ratio), discrete Fourier transforms,

graph analysis (such as homomorphism and Holant problem [17]), counting quantified conjunctive

query, and permanent computation of matrices. Finally, join-aggregate queries over max-product
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semiring can capture the maximum a posteriori problem in probabilistic graph models and maxi-

mum likelihood decoding in linear codes [5]. We refer interested readers to [3, 5, 23, 41] for many

more applications.

Finding efficient algorithms for computing join-aggregate queries has been a holy grail in database
theory since 1981. Previous results have achieved two flavors of runtimes: worst-case optimal [8, 39,
46, 56, 63] and output-sensitive [39, 63]. Worst-case optimal bounds are tight only on pathological

instances with huge outputs, which are rare in practice. In contrast, output-sensitive bounds express

the runtime as a function of the input size 𝑁 and output size OUT, which are more practically

meaningful, especially for queries where the aggregation may significantly reduce the output

size. In addition, output-sensitive algorithms can imply worst-case optimal ones: the classical

Yannakakis algorithm [63] is the best-known example, which achieves an output-optimal bound of

𝑂p𝑁 ` OUTq for free-connex queries (including acyclic joins as special

star

line

a-hierarchical

matrix
free-
connex

acyclic

Fig. 1. Classification of acyclic
join-aggregate queries.

cases). Although output-optimal algorithms are practically desirable,

they are muchmore difficult to design. Figure 1 illustrates the relation-

ships between different classes of acyclic join-aggregate queries. For

the largest class of acyclic but non-free-connex queries (in shadow area

in Figure 1), prior works have yet to discover an output-optimal algo-

rithm. Currently, there are only two approaches for computing these

queries: (1) run the Yannakakis algorithm; (2) convert the query into a

free-connex one using the tree decomposition technique and the worst-
case optimal join algorithm [45, 47], and then run the Yannakakis

algorithm on the tree decomposition. For (1), Yannakakis only gave an upper bound 𝑂 p𝑁 ¨ OUTq

on its runtime. Later, this bound has been tightened to 𝑂

´

𝑁 ¨ OUT1´ 1

𝑘

¯

for star queries with 𝑘
relations (the matrix multiplication query is the special case with two relations), which is already

output-optimal [51]. For (2), Khamis et al. showed an upper bound 𝑂
`

𝑁 #fn-subw ` OUT

˘

on its

runtime, where #fn-subw is the #free-connex submodular width of the query [39]. Both algorithms

are worst-case optimal (see Appendix B), but neither is output-optimal.
In this work, we identify the free-connex fractional hypertree width (fn-fhtw) for join-aggregate

queries to characterize the output-optimal complexity. We develop a matching lower and upper

bound Θ
´

𝑁 ¨ OUT1´ 1

fn-fhtw ` OUT

¯

for computing general acyclic join-aggregate queries. Note

that fn-fhtw “ 1 for the free-connex queries and fn-fhtw “ 𝑘 for star queries with 𝑘 relations,

thereby generalizing the previous results on these two special cases. Furthermore, since this bound

is output-optimal, it unifies and improves previously mentioned incomparable approaches for

acyclic queries. As a by-product, our output-optimal algorithm for acyclic queries also yields new

output-sensitive algorithms for cyclic queries, although their optimality remains unclear. In addition

to our algorithmic contribution, we prove that several important notions of width identified in the

literature, such as #free-connex submodular width [40] and free-connex submodular width [40],

collapse to free-connex fractional hypertree width fn-fhtw on acyclic queries. This surprising

finding further verifies our intuition that this is the right notion to capture the output-optimal

complexity of acyclic join-aggregate queries.

1.1 Problem Definition
Join Queries. A (natural) join is defined as a hypergraph 𝑞 “ pV, Eq, where the set of vertices

V “ t𝑥1, . . . , 𝑥ℓu model the attributes and the set of hyperedges E “ t𝑒1, . . . , 𝑒𝑘u Ď 2
V

model

the relations. Let domp𝑥q be the domain of attribute 𝑥 P V . Let domp𝑋 q “
ś

𝑥P𝑋 domp𝑥q be

the domain of a subset 𝑋 Ď V of attributes. An instance of 𝑞 is associated a set of relations

R “ t𝑅𝑒 : 𝑒 P Eu. Each relation 𝑅𝑒 consists of a set of tuples, where each tuple 𝑡 P 𝑅𝑒 is an
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assignment that assigns a value from domp𝑥q to 𝑥 for every attribute 𝑥 P 𝑒 . The hypergraph 𝑞 is

called self-join-free if every relation 𝑅𝑒 is distinct. In this work, we focus on self-join-free queries.

More specifically, our lower bounds assume self-join-free queries, but our algorithm can be applied

to the case when self-join exists. The full join result of 𝑞 on R, denoted as 𝑞pRq, is defined as

𝑞pRq “ t𝑡 P dompVq : @𝑒 P E, 𝜋𝑒𝑡 P 𝑅𝑒u, i.e., all combinations of tuples, one from each relation,

such that they share the same values on their common attributes.

Given a join query 𝑞 and an instance R, the effective domain of a subset of attributes 𝑋 Ď V is

defined as the collection of tuples in domp𝑋 q that appears in at least one full join result of 𝑞pRq,

i.e., the projection of 𝑞pRq onto 𝑋 .

Join-Aggregate Queries. A join-aggregate query is defined as a triple Q “ pV, E, yq, where

𝑞 “ pV, Eq is a (natural) join, and y Ď V is the set of output attributes. Let pD,‘,b, 0, 1q be a

commutative semi-ring. We consider an instance R for Q with annotated relations [27, 38]. Every
tuple 𝑡 is associated with an annotation𝑤p𝑡q P D. The annotation of a full join result 𝑡 P 𝑞pRq is

𝑤p𝑡q :“
Â

𝑒PE 𝑤p𝜋𝑒𝑡q. The query result of Q on R is defined as

QpRq “
à

V´y
𝑞pRq “

$

&

%

p𝑡y,𝑤p𝑡yqq : 𝑡y P 𝜋y𝑞pRq,𝑤p𝑡yq “
à

𝑡P𝑞pRq:𝜋y𝑡“𝑡y

𝑤p𝑡q

,

.

-

.

In plain language, a join-aggregate query (semantically) first computes the full join result 𝑞pRq

and the annotation of each result, which is the b-aggregate of the tuples comprising the join result.

Then it partitions 𝑞pRq into groups by the attributes in y. Finally, for each group, it computes

the ‘-aggregate of the annotations of the join result in that group. As mentioned, join-aggregate

queries include many common database queries as special cases. For example, if we ignore the

annotations, it becomes a join-project query 𝜋y𝑞pRq, also known as a conjunctive query. If we
take D be the domain of integers and set 𝑤p𝑡q “ 1 for every tuple 𝑡 , it becomes the COUNT(*)
GROUP BY y query; in particular, if y “ H, the query computes the full join size |𝑞pRq|. If we take

V “ t𝐴, 𝐵,𝐶uwith y “ t𝐴,𝐶u, and E “ tt𝐴, 𝐵u, t𝐵,𝐶uu, it becomes thematrixmultiplication query.
If we take V “ t𝐴1, 𝐴2, ¨ ¨ ¨ , 𝐴𝑘 , 𝐵u with y “ t𝐴1, 𝐴2, ¨ ¨ ¨ , 𝐴𝑘u, and E “ tt𝐴1, 𝐵u, ¨ ¨ ¨ t𝐴𝑘 , 𝐵uu, it

becomes a star query. If we take V “ t𝐴1, 𝐴2, ¨ ¨ ¨ , 𝐴𝑘`1u for 𝑘 ě 3 with y “ t𝐴1, 𝐴𝑘`1u, and

E “ tt𝐴1, 𝐴2u, t𝐴2, 𝐴3u, ¨ ¨ ¨ , t𝐴𝑘 , 𝐴𝑘`1uu, it becomes a line query.
Below, if not specified, a query always refers to a join-aggregate query. We use 𝑁 “

ř

𝑒PE |𝑅𝑒 |

to denote the input size of R and OUT “ |QpRq| to denote the output size of Q over R. We study

the data complexity of this problem by assuming the query size (i.e., |V| and |E|) as constants.

Model of Computation. We use the standard RAM model with uniform cost measures. A tuple or

a semiring element is stored in a word. Copying one semiring element or combining two semiring

elements via a semiring operation (‘ and b) can be done in 𝑂p1q time. Inheriting from [50], we

confine ourselves to semiring algorithms that work with semiring elements as an abstract type and

can only copy them from existing semiring elements or combine them using ‘ or b. No other

operations on semi-ring elements are allowed, such as division, subtraction, or equality check.

Output-Optimality. To establish output-optimality for algorithm design, we consider a unified

output-sensitive upper and lower bound in Definition 1.1.

Definition 1.1 (Output-sensitive Bound). For a self-join-free query Q, let 𝑓 pQq be the smallest

exponent such that for any parameters 1 ď 𝑁 and OUT ď max

R1Pℜp𝑁 q
|QpR1q|, a semi-ring algorithm

exists that can compute QpRq for any instance R of input size 𝑁 and output size OUT within

𝑂

´

𝑁 ¨ OUT
1´ 1

𝑓 pQq ` OUT

¯

time, whereℜp𝑁 q is the set of all instances over Q of input size 𝑁 .
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Join-Aggregate

Yannakakis [39, 63] Deep et al. [25] Our Algorithm

Query

a-Hierarchical 𝑁 ¨ OUT1´ 1

#fn-subw

Line min t𝑁 ¨ OUT, 𝑁 2u 𝑁 ¨ OUT1´ 1

𝑘 𝑁 ¨
?
OUT

Acyclic min

#

𝑁 ¨ OUT

𝑁 #fn-subw ` OUT

𝑁 ¨ OUT
1´ 1

projw ` OUT 𝑁 ¨ OUT1´ 1

fn-fhtw ` OUT

Fig. 2. Comparison between previous and our new upper bounds. All results are in Θp¨q. 𝑁 is the input size,
and OUT is the output size. 𝑘 is the number of relations. fn-fhtw is the free-connex fractional hypertree width
(Definition 3.1). projw is the project-width (Definition 3.6). #fn-subw is the #free-connex submodular width.
As shown in Lemma 3.7, #fn-subwpQq “ fn-fhtwpQq for any acyclic query Q.

This bound is a monotonic function of 𝑓 pQq. A smaller 𝑓 pQq implies a smaller runtime, i.e.,

a better upper bound. For example, 𝑓 pQq ď 1 implies 𝑂 p𝑁 ` OUTq; and 𝑓 pQq ď `8 implies

𝑂 p𝑁 ¨ OUTq. This definition can also express lower bounds. For example, 𝑓 pQq ě 1 implies

Ω p𝑁 ` OUTq. Below, we characterize 𝑓 p¨q for acyclic queries with both lower and upper bounds.

1.2 Our New Lower Bound for AcyclicQueries
Prior work has provided lower bounds of 𝑓 pQq. First, 𝑓 pQq ě 1 for all queries since any algorithm

must read the input data and output all query results. Pagh et al. showed 𝑓 pQq ě 𝑘 for star queries

with 𝑘 relations [50]. Hu identified the free-width for an acyclic query Q, denoted as freewpQq, and

showed that 𝑓 pQq ě freewpQq [31]. In this paper, we prove:

Theorem 1.2. For any acyclic query Q, 𝑓 pQq ě fn-fhtwpQq.

We next give some simple observations to understand our significant improvement over [31] and

defer the detailed comparison between fn-fhtwpQq and freewpQq to Section 3. First, fn-fhtwpQq ě

freewpQq ě 1 for all queries. In some cases, fn-fhtwpQq “ freewpQq, such as free-connex queries,

line queries, and star queries. But, for many other cases, fn-fhtwpQq ą freewpQq.

This fn-fhtw-dependent lower bound can be broken beyond semiring algorithms. For example,

some works use fast matrix multiplication techniques to speed up conjunctive queries (as a special

case of join-aggregate queries defined over Boolean semiring) processing [1, 7, 24, 31] or graph

pattern search (as a special case of self-joins) [16, 21, 36]. However, we cannot apply these techniques

to arbitrary join-aggregate queries, since a general semiring does not necessarily have an additive

inverse (such as the tropical semi-ring), so we won’t pursue this dimension further in this paper.

1.3 Our New Upper Bound for AcyclicQueries
In this paper, we propose a new algorithm by exploring a hybrid version of the Yannakakis algorithm

for computing acyclic queries, and therefore we can prove:

Theorem 1.3. For any acyclic query Q, 𝑓 pQq ď fn-fhtwpQq.

Combine Theorem 1.2 and Theorem 1.3, we obtain a full understanding of 𝑓 p¨q for acyclic queries:

Corollary 1.4. For any acyclic query Q, 𝑓 pQq “ fn-fhtwpQq.

Comparison with [63]. One question remains for the Yannakakis algorithm: Is the unsatisfactory
upper bound𝑂p𝑁 ¨OUTq due to a fundamental limitation of the algorithm itself or just because we do
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not have a tight analysis of its runtime? The runtime bound of the Yannakakis algorithm has been

tightened on free-connex queries and star queries [51]. Recently, Hu showed that the Yannakakis

algorithm indeed requires Θp𝑁 ¨ OUTq time for line queries [31], which has first demonstrated

the limitation of the Yannakakis algorithm. We provide a tight analysis for all acyclic queries.

More specifically, the runtime bound can be tightened to 𝑂

´

𝑁 ¨ OUT
1´ 1

fn-fhtwpQq ` OUT

¯

for a-
hierarchical queries. In contrast,𝑂p𝑁 ¨OUTq is tight for all non-a-hierarchical queries. As shown in

Figure 1, a-hierarchical queries include free-connex and star queries, but not line queries. Hence,

our new algorithm strictly outperforms the Yannakakis algorithm on all non-a-hierarchical queries.

Comparison with [39]. Another approach (even applying for cyclic queries) that converts a

query into a free-connex one and then runs the Yannakakis algorithm takes𝑂
`

𝑁 #fn-subwpQq ` OUT

˘

time, where #fn-subwpQq is the #free-connex sub-modular width of query Q [39]. As shown in

Lemma 3.10, both notions of width collapse on all acyclic queries, i.e., #fn-subwpQq “ fn-fhtwpQq

for any acyclic query Q. It is not hard to see that this result is always worse (or at least not better)

than our new result due to 𝑁 ¨ OUT
1´ 1

fn-fhtwpQq ` OUT “ 𝑂

´

𝑁 fn-fhtwpQq ` OUT

¯

. Moreover, this

result is worse than our new result by a factor of

´

𝑁 fn-fhtwpQq

OUT

¯

1´ 1

fn-fhtwpQq

when OUT ă 𝑁 fn-fhtwpQq
.

Comparison with [25]. In an independent work from ours, Deep et al. identified the project-
width for a query Q, denoted as projwpQq, and showed that 𝑓 pQq ď projwpQq [25]. Again, we

give some observations to understand our advantages over this upper bound and defer a detailed

comparison to Section 3. First, fn-fhtwpQq ď projwpQq for all queries. For a-hierarchical queries,

fn-fhtwpQq “ projwpQq. For line queries with 𝑘 relations, fn-fhtwpQq “ 2 ă projwpQq “ 𝑘 . Also,

for many other cases, fn-fhtwpQq ă projwpQq.

We summarize the runtime of our new algorithm and comparable algorithms in Figure 2.

1.4 Implications to CyclicQueries
The common approach that converts a query into an acyclic one using tree decomposition techniques

and then runs the Yannakakis algorithm takes 𝑂
`

𝑁 #subwpQq ¨ OUT
˘

time, where #subwpQq is the

#sub-modular width of the query Q [43]. If restricting tree decompositions to be free-connex, this

takes𝑂
`

𝑁 #fn-subwpQq ` OUT

˘

time. Note that #subwpQq ď #fn-subwpQq for all queries. These two

results are incomparable unless the value of OUT is known. By replacing the Yannakakis algorithm

with our new output-optimal algorithm, we can get new output-sensitive algorithms for cyclic

queries. However, their optimality is unclear, which we leave as an open question.

1.5 Organization of This Paper
Our paper is organized as follows. In Section 2, we introduce the preliminaries. In Section 3, we

define the free-connex fractional hypertree width and investigate its properties for acyclic queries.

In Section 4, we review the Yannakakis algorithm and introduce our algorithm for line queries

as an introductory example. We present our algorithm for general acyclic queries in Section 5. In

Section 6, we show output-sensitive algorithms for cyclic queries. Finally, we review other related

works in Section 8 and conclude in Section 9.

2 PRELIMINARIES
2.1 Fractional Edge Covering and AGM Bound
For a join query 𝑞 “ pV, Eq, we use E𝑥 “ t𝑒 P E : 𝑥 P 𝑒u to denote the set of relations containing

attribute 𝑥 . An attribute 𝑥 P V is unique if |E𝑥 | “ 1, and joint otherwise. For a subset of attributes
𝑆 Ď V , we use𝑞r𝑆s “ p𝑆, Er𝑆sq to denote the sub-query induced by 𝑆 , where Er𝑆s “ t𝑒X𝑆 : 𝑒 P Eu.
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A fractional edge covering is a function 𝜌 : E Ñ r0, 1s such that

ř

𝑒 :𝐴P𝑒 𝜌p𝑒q ě 1 for each attribute

𝐴 P V . The fractional edge covering number of 𝑞, denoted as 𝜌˚p𝑞q, is defined as the minimum sum

of weight over all possible fractional edge coverings 𝜌 for 𝑞, i.e., 𝜌˚p𝑞q “ min𝜌

ř

𝑒PE 𝜌p𝑒q. For a

join query 𝑞 “ pV, Eq and any parameter 𝑁 P Z`
, the AGM bound [8] states that the maximum

number of join results produced by any instance of input size 𝑁 is Θp𝑁 𝜌˚p𝑞qq. For a join-aggregate

query Q “ pV, E, yq with 𝑞 “ pV, Eq and any parameter 𝑁 P Z`
, the maximum number of join

results produced by any instance of input size 𝑁 is Θp𝑁 𝜌˚p𝑞rysqq.

2.2 Tree Decompositions
A tree decomposition (TD) of Q “ pV, E, yq is a pair pT , 𝜒q, where T is a tree and 𝜒 : nodespT q Ñ

2
V

is a mapping from the nodes of T to subsets ofV , that satisfies the following properties:

‚ For each relation 𝑒 P E, there is a node 𝑢 P nodespT q such that 𝑒 Ď 𝜒p𝑢q.

‚ For each attribute 𝐴 P V , the set t𝑢 P nodespT q : 𝐴 P 𝜒p𝑢qu forms a connected sub-tree of T .

Each set 𝜒p𝑢q is called a bag of the TD. Wlog, we assume 𝜒p𝑢q ‰ 𝜒p𝑢1q for any pair of nodes

𝑒, 𝑒 1 P nodespT q. The width of pT , 𝜒q noted as widthpT , 𝜒q is defined as

widthpT , 𝜒q “ max

𝑢PnodespTq
𝜌˚ p𝑞r𝜒p𝑢qsq

i.e., the maximum fractional edge covering number of the subqueries induced by all bags in T . A

TD is non-redundant if no bag is a subset of another. Below, we can only consider non-redundant

TDs. A TD pT , 𝜒q is free-connex if there is a connected subtree 𝑆 of T such that

Ť

𝑢Pnodesp𝑆q 𝜒p𝑢q “ y,
i.e., the union of attributes appearing in 𝑆 is exactly the output attributes. 𝑆 is called a connex of T .

2.3 Classification ofQueries
Acyclic [12, 35]. A query is acyclic if and only if it has a width-1 TD.

non-output attribute

output attribute

2

1

3

2

1

3

4

4

decompose

cleanse

Fig. 3. An illustration of the
decompose and cleanse pro-
cess.

Free-connex [9]. A query is free-connex if and only if it has a width-1

free-connex TD.
Hierarchical [54]. A queryQ “ pV, E, yq is hierarchical if for any pair

of attributes 𝐴, 𝐵 P V , either E𝐴 Ď E𝐵 , or E𝐵 Ď E𝐴, or E𝐴 X E𝐵 “ H.

D-Connected. The existential connectivity of a query Q “ pV, E, yq is

defined on a graph 𝐺D
Q , where each relation 𝑒 P E is a vertex, and an

edge exists between 𝑒, 𝑒 1 P E if 𝑒 X 𝑒 1 ´ y ‰ H. Q is D-connected if 𝐺D
Q

is connected, and D-disconnected otherwise. If Q is D-disconnected, we

can decompose it as follows. We find all connected components of 𝐺D
Q ,

in which the set of relations corresponding to the set of vertices in one

connected component of 𝐺D
Q form a connected subquery of Q. There

are four D-connected subqueries of Q: 1 is a complicated acyclic query,

2 is a line query, 3 is a star query, and 4 is a single relation.

Cleansed. A query Q is cleansed if every unique attribute is an output

attribute, and there exist no relationswhose attributes are fully contained

by another one. If Q is not cleansed, we cleanse it by iteratively removing

a unique non-output attribute or a relation whose attributes are fully

contained by another. The resulting query is the cleansed version of Q.

Separated. A query Q “ pV, E, yq is separated if every output attribute
is unique, every unique attribute is an output attribute, and for each

𝑒 P E with 𝑒 X y ‰ H, there exists some 𝑒 1 P E ´ t𝑒u with 𝑒 ´ y Ď 𝑒 1
.

Among these 4 queries, all of 2, 3, 4 are separated, but 1 is not.
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Agg-hierarchical. A query Q is agg-hierarchical if every D-connected subquery in 𝐺D
Q1 is hierar-

chical, where Q1
is the cleansed version of Q.

3 FREE-CONNEX FRACTIONAL HYPERTREE WIDTH
In this section, we give a structural definition of free-connex fractional hypertree width for general

queries. For acyclic queries, we characterize an equivalent procedural definition, which is fun-

damental in facilitating comparisons between free-connex fractional hypertree width with other

notions of width in Section 3.2, and inspiring our output-optimal algorithm in Section 5.

3.1 Definition
The structural definition of free-connex fractional hypertree width is defined on free-connex tree

decompositions. Let FTDpQq denote the set of all free-connex TDs for a query Q.

Definition 3.1 (Free-connex Fractional Hypertree Width (fn-fhtw)). For a query Q “ pV, E, yq, its

free-connex fractional hypertree width fn-fhtwpQq is defined as:

fn-fhtwpQq “ min

pT,𝜒qPFTDpQq
widthpT , 𝜒q (1)

i.e., the minimum width of all possible free-connex TDs.

It is easy to see fn-fhtwpQq ě 1 for all queries and fn-fhtwpQq “ 1 for free-connex queries.

Furthermore, fn-fhtw is preserved in the cleanse process (see Lemma 3.2). When restricting our

scope to acyclic queries, we prove two important properties of fn-fhtw in Lemma 3.3 and Lemma 3.4,

which serves as a procedural definition of free-connex fractional hypertree width. Their proofs are

rather technical and deferred to Appendix A.

Lemma 3.2. For any query Q, fn-fhtwpQq “ fn-fhtwpQ1q, where Q1 is cleansed version of Q.

Lemma 3.3. For any acyclic queryQ “ pV, E, yq, ifQ is D-disconnected with D-connected subqueries
Q1,Q2, ¨ ¨ ¨ ,Qℎ , then fn-fhtwpQq “ max𝑖Prℎs fn-fhtwpQ𝑖q.

Lemma 3.4. For any acyclic queryQ “ pV, E, yq, ifQ is D-connected, then fn-fhtwpQq “ 𝜌˚ p𝑞rysq

for 𝑞 “ pV, Eq, i.e., the fractional edge covering number of the sub-query induced by output attributes.

Corollary 3.5. For any acyclic query Q “ pV, E, yq, its free-connex fractional hypertree width
fn-fhtwpQq is recursively defined as:
‚ IfQ is D-disconnected with D-connected subqueriesQ1,Q2, ¨ ¨ ¨ ,Qℎ , fn-fhtwpQq “ max𝑖Prℎs fn-fhtwpQ𝑖q.
‚ If Q is D-connected, fn-fhtwpQq “ 𝜌˚ p𝑞rysq for 𝑞 “ pV, Eq, i.e., the fractional edge covering
number of the sub-query induced by output attributes.

3.2 Comparison with Other Notions of Width
Free-width and Project-width. We first review the definitions for free-width and project-width:

Definition 3.6 (Free-width [31] and Project-width [25]). For any acyclic query Q “ pV, E, yq, its

free-width freewpQq and project-width projwpQq are defined as follows:

‚ IfQ is D-disconnectedwith D-connected subqueriesQ1,Q2, ¨ ¨ ¨ ,Qℎ , freewpQq “ max𝑖Prℎs freewpQ𝑖q,

and projwpQq “ max𝑖Prℎs projwpQ𝑖q.

‚ If Q is D-connected but not cleansed, freewpQq “ freewpQ1q and projwpQq “ projwpQ1q, where

Q1
is the cleansed version of Q.

‚ If Q is D-connected and cleansed, freewpQq “ |t𝑒 P E : 𝑒 X V‚ ‰ Hu|, where V‚ is the set of

unique (output) attributes in Q; and projwpQq “ |E|.
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Lemma 3.7. For any acyclic query Q, freewpQq ď fn-fhtwpQq ď projwpQq.

These three notions of width share the exact definition if Q is D-disconnected or not cleansed.

The only difference comes when Q is D-connected and cleansed. In this case, it is not hard to see that

freewpQq ď fn-fhtwpQq ď projwpQq. First, every relation containing a unique attribute (which

must be an output attribute because Q is cleansed) should be assigned a weight of 1 in any fractional

edge covering of 𝑞rys. This is why freewpQq ď fn-fhtwpQq. Moreover, assigning all relations with

weight 1 forms a trivial fractional edge covering for 𝑞rys, hence fn-fhtwpQq ď |E| “ projwpQq. In

Example 3.8, we show a query Q with freewpQq ă fn-fhtwpQq ă projwpQq.

Example 3.8. Consider an D-connected and cleansed query Q “ pV, E, yq in Figure 4, whereV “

t𝐴1, 𝐴2, 𝐴3, 𝐵1, 𝐵2, 𝐵3,𝐶1,𝐶2u, E “ t𝑒1 “ t𝐴1, 𝐵1u, 𝑒2 “ t𝐴2, 𝐵2u, 𝑒3 “ t𝐴3, 𝐵3u, 𝑒5 “ t𝐵1, 𝐵2,𝐶1,𝐶2u,

𝑒6 “ t𝐵3,𝐶1,𝐶2uu, and y “ t𝐴1, 𝐴2, 𝐴3,𝐶2u. Note that 𝐴1, 𝐴2, 𝐴3 are unique output attributes. All

of 𝑒1, 𝑒2, 𝑒3 contain some unique output attribute(s), so freewpQq “ 3. It has the fractional edge

covering number as 4, so fn-fhtwpQq “ 4. It has 5 relations, so projwpQq “ 5.

A1

A2

A3

C2
B1

C1 B3B2

Fig. 4. An example query
Q with freewpQq ă

fn-fhtwpQq ă projwpQq.

#Free-connex submodular width. The #free-connex submodular width

(#fn-subw) is also defined based on tree decompositions but in a rather

complicated formula. First, we can show #fn-subwpQq ď fn-fhtwpQq for

all queries. From [39], we can further draw a clear ordering by addition-

ally involving submodular width (subw), free-connex submodular width

(fn-subw), and #submodular width (#subw) as follows:

Lemma 3.9. For any query Q, subwpQq ď t#subwpQq, fn-subwpQqu ď

#fn-subwpQq ď fn-fhtwpQq.

Surprisingly, some widths collapse when we restrict our scope to acyclic queries!

Lemma 3.10. For any acyclic query Q, fn-subwpQq “ #fn-subwpQq “ fn-fhtwpQq.

All missing details are deferred to Appendix A. This result also implies the fundamental difference

between existing algorithms and our new algorithm. On acyclic queries, the algorithm in [39] always

picks one free-connex TD and performs computation according to it; in contrast, our algorithm

partitions the input instance into multiple sub-instances, picks a set of free-connex TDs, and applies
them to different sub-instances. The power of this hybrid strategy will become much clearer in our

next section.

4 WARM UP: YANNAKAKIS REVISITED AND LINE QUERY
In this section, we first review the Yannakakis algorithm [38, 63] over acyclic join-aggregate queries.

To illustrate some of the high-level ideas behind our general algorithm, we examine line queries

(a.k.a. chain matrix multiplication), which represent the simplest scenario where the Yannakakis

algorithm is not optimal:

Qline “
à

𝐴2,𝐴3,¨¨¨ ,𝐴𝑘

𝑅1p𝐴1, 𝐴2q ’ 𝑅2p𝐴2, 𝐴3q ’ ¨ ¨ ¨ ’ 𝑅𝑘p𝐴𝑘 , 𝐴𝑘`1q

Notably, chain matrix multiplication has independently garnered significant attention in previous

research [11, 26, 42, 48].

4.1 Yannakakis Algorithm Revisited
Suppose we are given an acyclic query Q “ pV, E, yq with 𝑞 “ pV, Eq and an instance R for Q. For

simplicity, we assume that there exists no pair of relations 𝑒, 𝑒 1 P E such that 𝑒 Ď 𝑒 1
; otherwise, we
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Algorithm 1: YannakakispQ “ pV, E, yq,R,T q [38, 63]

1 foreach node 𝑒 of T do 𝑝𝑒 Ð the parent node of 𝑒 in T ;

2 while visit nodes of T in a bottom-up way (excluding the root 𝑟 ) do
3 foreach node 𝑒 visited do 𝑅𝑝𝑒 Ð 𝑅𝑝𝑒 ˙ 𝑅𝑒 ;

4 while visit nodes of T in a top-down way (excluding the root 𝑟 ) do
5 foreach node 𝑒 visited do 𝑅𝑒 Ð 𝑅𝑒 ˙ 𝑅𝑝𝑒 ;

6 while visit nodes of T in a bottom-up way (excluding the root 𝑟 ) do
7 foreach node 𝑒 visited do
8 𝑅𝑒 Ð ‘𝑒´𝑝𝑒´y𝑅𝑒 ;

9 𝑅𝑝𝑒 Ð 𝑅𝑒 ’ 𝑅𝑝𝑒 ;

10 return ‘𝑟´y𝑅𝑟 for the root 𝑟 ;

A2A3

A3A4

A1

A4A5

U3(A3, A4, A5) := R3 ./ R4

U2(A2, A3, A5) := R2 ./ (
⊕

A3
U3)

U1(A1, A2, A5) = R1 ./ (
⊕

A2
U1)

TD rooted at (A1A2)

R4

R3

R2

R1

A3A4

A2A3

A2

V2(A1, A2, A3) := R2 ./ R1

V3(A1, A3, A4) := R3 ./ (
⊕

A2
V2)

V4(A1, A4, A5) = R4 ./ (
⊕

A3
V3)

TD rooted at (A4A5)

R1

R3

A1

A4A5R4

R2

A2

Fig. 5. An illustration of two width-1 TDs for a line query with 𝑘 “ 4. For the TD rooted at p𝐴1𝐴2q,𝑈3,𝑈2,𝑈1

are the intermediate results materialized by the Yannakakis algorithm, implying a free-connex TD (left) in
Figure 6. For the TD rooted at p𝐴4𝐴5q, 𝑉2,𝑉3,𝑉4 are the intermediate results materialized by the Yannakakis
algorithm, implying a free-connex TD (right) in Figure 6.

can preprocess
1
these relations within𝑂p𝑁 q time. Let pT ,Xq be a width-1 (non-redundant) TD for

Q. There is a one-to-one correspondence between relations in E and nodes in T . For simplicity, we

also use 𝑒 to denote the node 𝑢 in T that corresponds to relation 𝑒 , i.e., 𝜒p𝑢q “ 𝑒 . The algorithm

consists of two phases:

Semi-Joins. A tuple is dangling if it does not participate in any full join result. The first phase

removes all dangling tuples via a bottom-up and top-down pass of semi-joins along T .

Pairwise Join-Aggregation. The second phase performs joins and aggregations in a bottom-

up way along T . Specifically, it takes two nodes 𝑅𝑒 and 𝑅𝑝𝑢 such that 𝑢 is a leaf and 𝑝𝑢 is the

parent of 𝑢, aggregate over non-output attributes that do not appear in 𝜒p𝑝𝑢q by replacing 𝑅𝑒 with

‘𝜒p𝑢q´𝜒p𝑝𝑢q´y𝑅𝑒 , and replaces 𝑅𝑝𝑢 with 𝑅𝑒 ’ 𝑅𝑝𝑢 . Then 𝑅𝑒 is removed, and the step repeats until

only one node remains, i.e., the root node 𝑟 . Hence, it aggregates over all remaining non-output

attributes in 𝑟 , and outputs ‘𝑟´y𝑅𝑟 as the final result. See an example in Figure 5.

The runtime is proportional to the largest number of intermediate results materialized (after

dangling tuples are removed). But, this number can vary significantly depending on the sepecific

query plans chosen. Each query plan corresponds to one width-1 TD together with a particular

sequence of pairwise joins and aggregations. So, the runtime of the Yannakakis algorithm refers to

the runtime of the fastest available query plan.

1
For any pair of 𝑒, 𝑒1 P E with 𝑒 Ď 𝑒1

, we simply replace 𝑅𝑒1 by 𝑅𝑒1 ’ 𝑅𝑒 and remove 𝑅𝑒 . Note that the annotations of

tuples in 𝑅𝑒 are “passed” to tuples in 𝑅𝑒1 via the join. As 𝑒 Ď 𝑒1
, the join can be done within𝑂p𝑁 q time.
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Algorithm 2: LinepQline,Rq

1 foreach 𝑖 P r𝑘 ´ 1s do
2 if 𝑖 “ 1 then 𝑇1p𝐴1, 𝐴2q Ð 𝑅1p𝐴1, 𝐴2q;

3 else 𝑇𝑖p𝐴1, 𝐴𝑖`1q Ð
à

𝐴𝑖

𝑆𝑖´1p𝐴1, 𝐴𝑖q ’ 𝑅𝑖 p𝐴𝑖 , 𝐴𝑖`1q;

4 𝐴
heavy
𝑖`1

Ð

!

𝑎 P domp𝐴𝑖`1q :
ˇ

ˇ𝜎𝐴𝑖`1“𝑎𝑇𝑖
ˇ

ˇ ą

a

˜OUT

)

;

5 𝐴
light
𝑖`1

Ð

!

𝑎 P domp𝐴𝑖`1q : 1 ď
ˇ

ˇ𝜎𝐴𝑖`1“𝑎𝑇𝑖
ˇ

ˇ ď

a

˜OUT

)

;

6 𝑅
heavy
𝑖

, 𝑅
light
𝑖

Ð 𝑅𝑖 ˙𝐴
heavy
𝑖`1

, 𝑅𝑖 ˙𝐴
light
𝑖`1

;

7 𝑆𝑖p𝐴1, 𝐴𝑖`1q Ð 𝑇𝑖p𝐴1, 𝐴𝑖`1q ˙𝐴
light
𝑖`1

;

8 foreach 𝑖 P r𝑘 ´ 1s do
9 Q𝑖 Ð

à

𝐴2,𝐴3,¨¨¨ ,𝐴𝑘

´

’𝑗Pr𝑖´1s 𝑅
light
𝑗

¯

’ 𝑅
heavy
𝑖

’

´

’𝑘
𝑗“𝑖`1

𝑅 𝑗

¯

;

10 Q˚ Ð
à

𝐴2,𝐴3,¨¨¨ ,𝐴𝑘

´

’𝑗Pr𝑘´1s 𝑅
light
𝑗

¯

’ 𝑅𝑘 ;

11 return Q1 ‘ Q2 ‘ ¨ ¨ ¨ ‘ Q𝑘´1 ‘ Q˚;

4.2 LineQueries

A2

A2A3

A3A4

A3A4

A2A3

A1

A5

A4A5

A5

A5

A1

A1

A1

A1A5 A1A5

Fig. 6. An illustration of
two free-connex TDs for
a line query with 𝑘 “ 4.

As pointed out by [31], there exists some instance for line queries such that

every query plan of the Yannakakis algorithmmustmaterializeΩp𝑁 ¨OUTq

intermediate results. From their hard instance, we are inspired to leverage

the power of multiple query plans to overcome the fundamental limitation

of the Yannakakis algorithm. Given the wide variety of TDsfor a line

query, one natural question arises: which query plans should we select?

For line queries, we only consider two query plans that correspond to two

width-1 TDs: (a) one is rooted at p𝐴1𝐴2q; (b) one is rooted at p𝐴𝑘𝐴𝑘`1q.

See Figure 5 and 6. Behind our hybrid strategy, the idea is to partition

the input instance into a set of sub-instances and then choose one of two

plans for each sub-instance. To determine which plan to use, we need a

deeper analysis of data statistics. For example, if the effective domain of 𝐴𝑘`1 is small, we choose

the one rooted at p𝐴1𝐴2q; and if that of 𝐴1 is small, we choose the one rooted at p𝐴𝑘𝐴𝑘`1q.

Algorithm. As described in Algorithm 2, our new approach consists of two stages. In Stage I, we
partition the input instance. In Stage II, we choose different query plans for each sub-instance,

apply the Yannakakis algorithm, and aggregate all subqueries. See an example in Figure 7. We now

assume a parameter ˜OUT is known such that ˜OUT ď OUT ď 𝑐 ¨ ˜OUT for some constant 𝑐 . This

assumption can be removed without increasing the complexity asymptotically [30].

Stage I: Partition. For each value 𝑎 P domp𝐴2q, we define its degree as the number of tuples from 𝑅1

displaying 𝑎 in 𝐴2, i.e., △p𝑎q “ |𝜋𝐴1
𝜎𝐴2“𝑎𝑅1|. A value 𝑎 P domp𝐴2q is heavy if △p𝑎q ą

a

˜OUT, and

light otherwise. Let𝐴heavy
2

, 𝐴
light
2

be the set of heavy and light values in𝐴2. Let 𝑅
heavy
1

“ 𝑅1 ˙𝐴
heavy
2

and 𝑅
light
1

“ 𝑅1 ˙𝐴
light
2

be the set of heavy and light tuples in 𝑅1 respectively. Below, we partition

relations by ordering 𝑅2, 𝑅3, ¨ ¨ ¨ , 𝑅𝑘 . Suppose we are done with 𝑅1, 𝑅2, ¨ ¨ ¨ , 𝑅𝑖´1. We next partition

values in domp𝐴𝑖`1q that can be joined with any value in domp𝐴1q via 𝑅
light
1

, 𝑅
light
2

, ¨ ¨ ¨ , 𝑅
light
𝑖´1

. Let

△p𝑎q “

ˇ

ˇ

ˇ
𝜋𝐴1

!´

’𝑗Pr𝑖´1s 𝑅
light
𝑗

¯

’ p𝜎𝐴𝑖`1“𝑎𝑅𝑖q

)
ˇ

ˇ

ˇ
be the degree of each value 𝑎 P domp𝐴𝑖`1q. A
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Stage II: Hybrid Yannakakis

A
heavy
2

A2A3

A3A4

A1

A4A5

R
heavy
1

R2

R3

R4

A
light
2

A
light
2 A

heavy
3

A3A4

A1

A4A5

R
light
1

R
heavy
2

R3

R4

A
light
2 A

light
3

A
light
3 A

heavy
4

A1

A4A5

R
heavy
3

R4

R
light
1 A

light
2

R
light
2

A4A5R4

A
light
3 A

light
4R

light
3

A
light
2 A

light
3R

light
2

A1R
light
1 A

light
2

Partition A2

Partition A3

Partition A4

light

lightheavy

heavy

Q1

Q2

Q3 Q∗

light

heavy Stage I: Partition

TD rooted at (A1A2) TD rooted at (A1A2) TD rooted at (A1A2) TD rooted at (A4A5)

Fig. 7. An illustration of Algorithm 2 for line query with 𝑘 “ 4.

value 𝑎 P domp𝐴𝑖`1q is heavy if △ p𝑎q ą

a

˜OUT, and light otherwise. Let 𝐴heavy
𝑖`1

, 𝐴
light
𝑖`1

be the set of

heavy, light values in 𝐴𝑖 . Then, 𝑅
heavy
𝑖

“ 𝑅𝑖 ˙𝐴
heavy
𝑖`1

and 𝑅
light
𝑖

“ 𝑅𝑖 ˙𝐴
light
𝑖`1

. Note that some values

in 𝐴𝑖`1 may be undefined, as well as some tuples in 𝑅𝑖 .

Instead of computing △p¨q directly, we introduce the following intermediate relations:

𝑇𝑖 p𝐴1, 𝐴𝑖`1q “
à

𝐴2,𝐴3,¨¨¨ ,𝐴𝑖

´

’𝑗Pr𝑖´1s 𝑅
light
𝑗

¯

’ 𝑅𝑖 , and 𝑆𝑖p𝐴1, 𝐴𝑖`1q “
à

𝐴2,𝐴3,¨¨¨ ,𝐴𝑖

´

’𝑗Pr𝑖s 𝑅
light
𝑗

¯

and recursively compute them as follows (with 𝑇1 “ 𝑅1 in line 2):

𝑇𝑖 p𝐴1, 𝐴𝑖`1q “
à

𝐴𝑖

𝑆𝑖´1 p𝐴1, 𝐴𝑖q ’ 𝑅𝑖p𝐴𝑖 , 𝐴𝑖`1q; (line 3)

𝑆𝑖 p𝐴1, 𝐴𝑖`1q “ 𝑇𝑖 p𝐴1, 𝐴𝑖`1q ˙𝐴
light
𝑖`1

; (line 7)

Once we have computed 𝑇𝑖 , we can identify the heavy and light values in 𝐴𝑖`1, i.e., 𝐴
heavy
𝑖`1

and

𝐴
light
𝑖`1

(lines 4-5). We can use 𝐴
heavy
𝑖`1

, 𝐴
light
𝑖`1

to partition 𝑅𝑖 into 𝑅
heavy
𝑖

, 𝑅
light
𝑖

(line 6). Then, 𝑆𝑖 can be

computed based on 𝑇𝑖 and 𝐴
light
𝑖`1

. Furthermore, 𝑇𝑖`1 can be computed based on 𝑆𝑖 and 𝑅𝑖`1.

We partitionQline into𝑘 sub-instances:Q𝑖 “
à

𝐴2,𝐴3,¨¨¨ ,𝐴𝑘

´

’𝑗Pr𝑖´1s 𝑅
light
𝑗

¯

’ 𝑅
heavy
𝑖

’

´

’𝑘
𝑗“𝑖`1

𝑅 𝑗

¯

for each 𝑖 P r𝑘 ´ 1s, and Q˚ “
à

𝐴2,𝐴3,¨¨¨ ,𝐴𝑘

´

’𝑗Pr𝑘´1s 𝑅
light
𝑗

¯

’ 𝑅𝑘 .

Stage II: Hybrid Yannakakis. We invoke the Yannakakis algorithm to compute Q𝑖 for each

𝑖 P r𝑘´ 1s using the TD (a), and Q˚ using the TD (b). In the latter case, it is equivalent to computing
À

𝐴𝑘
𝑆𝑘´1p𝐴1, 𝐴𝑘q ’ 𝑅𝑘p𝐴𝑘 , 𝐴𝑘`1q. Finally, we aggregate the results of all subqueries.

Analysis. In Stage I, consider any 𝑖 P r𝑘s ´ t1u. As there are 𝑁 tuples in 𝑅𝑖 , and each of them

can be joined with at most

a

˜OUT tuples in 𝑆𝑖´1, 𝑇𝑖 can be computed in 𝑂
`

𝑁 ¨
?
OUT

˘

time.

Also, |𝑇𝑖 | “ 𝑂
`

𝑁 ¨
?
OUT

˘

. The cost of computing 𝑆𝑖 is 𝑂p|𝑇𝑖 |q “ 𝑂
`

𝑁 ¨
?
OUT

˘

. In Stage II, for
Q𝑖 , each value in the effective domain of 𝐴𝑘`1 can be joined with at least

a

˜OUT values in 𝐴1,

implied by𝐴
heavy
𝑖`1

. As there are OUT results in total, the effective domain size of𝐴𝑘`1 is𝑂
`?

OUT

˘

.
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Algorithm 3: AcyclicJoinAggregatepQ,Rq

1 Remove dangling tuples in R;
2 Q1,Q2, ¨ ¨ ¨ ,Qℎ Ð D-connected subqueries of Q;

3 foreach 𝑖 P rℎs do R𝑖 Ð sub-instance of R for subquery Q𝑖 ;

4 foreach 𝑖 P rℎs do
5 pQ1

𝑖 ,R1
𝑖q Ð CleansepQ𝑖 ,R𝑖q; § Algorithm 4;

6 pQ2
𝑖 ,R2

𝑖 q Ð SeparatepQ1
𝑖 ,R1

𝑖q; § Algorithm 5;

7 S𝑖 Ð HybridYannakakispQ2
𝑖 ,R2

𝑖 q § Algorithm 6;

8 return ’𝑖Prℎs S𝑖 by Yannakakis algorithm [63]; § Algorithm 1;

Algorithm 4: CleansepQ “ pV, E, yq,Rq

1 while pV, E, yq is not cleansed do
2 if D𝐵 P V ´ y s.t. |E𝐵 | “ 1, say E𝐵 “ t𝑒u then
3 𝑅𝑒 Ð ‘𝐵𝑅𝑒 , 𝑒 Ð 𝑒 ´ t𝐵u, V Ð V ´ t𝐵u;

4 if D𝑒, 𝑒 1 P E s.t. 𝑒 Ď 𝑒 1 then
5 𝑅𝑒1 Ð 𝑅𝑒1 ’ 𝑅𝑒 , E Ð E ´ t𝑒u;

6 return Updated pV, E, yq and R;

Hence, the number of intermediate join results materialized for each node is at most𝑂
`

𝑁 ¨
?
OUT

˘

.

For Q˚, the total number of intermediate join results is 𝑂
`

𝑁 ¨
?
OUT

˘

, as there are 𝑁 tuples in

𝑅𝑘 and each of them can be joined with at most

a

˜OUT tuples in 𝑆𝑘´1. Hence, this step takes

𝑂
`

𝑁 ¨
?
OUT

˘

time. Finally, as each sub-query produces at most OUT results, and there are 𝑂p1q

subqueries, the aggregation step takes 𝑂pOUTq time. Putting everything together, we obtain:

Theorem 4.1. For Qline and an arbitrary instance R of input size 𝑁 and output size OUT, the query
result QpRq can be computed in 𝑂

`

𝑁 ¨
?
OUT

˘

time.

5 ACYCLIC QUERIES
After obtaining some high-level ideas behind our hybrid strategy, we are now ready to move to

general acyclic queries. But, there are several challenging questions in front of us:

‚ How to relate free-connex fractional hypertree width to the structure of an acyclic query?
‚ What optimal condition is required to run the Yannakakis algorithm within the targeted time?
‚ How to partition the input instance into a set of sub-instances satisfying the optimal condition?
We will answer these questions step by step.

5.1 Outline of Our Algorithm
The procedural definition of free-connex fractional hypertree width in Corollary 3.5 essentially

outlines our algorithm. As described in Algorithm 3, given an acyclic query Q and an instance R of

input size 𝑁 and output size OUT, we first remove dangling tuples (line 1), decompose Q into a set

of connected subqueries (line 2-3), compute the results of each D-connected subquery separately

(line 4-6) and combine their results via join (line 7).

From now on, we focus exclusively on D-connected queries. Given an arbitrary subquery Q and

an instance R of input size 𝑁 , if Q is not cleansed, we apply Algorithm 4 to obtain a cleanse version
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Algorithm 5: SeparatepQ “ pV, E, yq,Rq

1 E˝ Ð a set of fn-fhtw relations with y Ď
ď

𝑒PE1

𝑒;

2 𝜅 Ð assign each output attribute 𝐴 P y to an arbitrary relation 𝑒 P E1
with 𝐴 P 𝑒;

3 foreach 𝐴 P y with |E𝐴| ą 1 do
4 𝑥𝐴 Ð an attribute not appearing V;

5 V Ð V Y t𝑥𝐴u, 𝜅p𝐴q Ð 𝜅p𝐴q Y t𝑥𝐴u, y Ð y Y t𝑥𝐴u ´ t𝐴u;

6 foreach tuple 𝑡 P 𝑅𝜅p𝐴q do extend 𝑡 with value 𝜋𝐴𝑡 in attribute 𝑥𝐴;

7 foreach 𝑒 P E˝ s.t. E𝑒 1 P E with 𝑒 ´ y Ď 𝑒 1 do
8 𝑥𝑒 Ð an attribute not appearing in V;

9 𝑒2 Ð t𝑥𝑒u Y p𝑒 X yq;

10 V Ð V Y t𝑥𝑒u, y Ð y Y t𝑥𝑒u ´ p𝑒 X yq, E Ð E Y t𝑒2u;

11 𝑅𝑒2 Ð H;

12 foreach 𝑡 P 𝜋𝑒X𝑒2𝑅𝑒 do
13 𝑡 1 Ð a tuple over attributes 𝑒2

with 𝜋𝑒X𝑒2𝑡 1 “ 𝜋𝑥𝑒 𝑡
1 “ 𝑡 and𝑤p𝑡 1q “ 1;

14 𝑅𝑒2 Ð 𝑅𝑒2 Y t𝑡 1u;

15 R Ð R Y t𝑅𝑒2 u;

16 return Updated Q and R;

Q1
and an updated instance R1

of input size𝑂p𝑁 q such that QpRq “ Q1pR1q. Algorithm 4 iteratively

applies the following two steps: (lines 2-3) removes a unique non-output attribute 𝐵 P V ´ y
(suppose E𝐵 “ t𝑒uq and aggregate 𝑅𝑒 over 𝐵; or (lines 4-5) removes relation 𝑒 P E if there exists

another relation 𝑒 1 P E with 𝑒 Ď 𝑒 1
and update 𝑅𝑒1 by 𝑅𝑒1 ’ 𝑅𝑒 , i.e., update the annotation of each

tuple 𝑡 P 𝑅𝑒1 by𝑤p𝑡q b𝑤 p𝜋𝑒𝑡q. This step only takes 𝑂p𝑁 q time.

Theorem 5.1. Any D-connected queryQ and an instanceR of input size𝑁 , can be transformed into a
cleansed query Q1 and an instance R1 of input size𝑂p𝑁 q within𝑂p𝑁 q time, such that QpRq “ Q1pR1q.

Next, we narrow our scope to D-connected and cleansed queries. Given an arbitrary query Q and

an instanceR, ifQ is not separated, we apply the Algorithm 5 to obtain a separated versionQ1
and an

updated instance R1
of input size 𝑂p𝑁 q such that QpRq “ Q1pR1q and fn-fhtwpQq “ fn-fhtwpQ1q.

Algorithm 5 begins by handling joint output attributes (lines 1-6). As shown in Lemma 5.2, it is

always feasible to find a subset E˝ Ď E of fn-fhtw relations that contain all output attributes (line

1), and to assign each output attribute 𝐴 P y to an arbitrary relation 𝑒 P E˝ with 𝐴 P 𝑒 . Let 𝜅 be

such an assignment (line 2). For each joint output attribute 𝐴 P y, we introduce a unique output
attribute 𝑥𝐴 to relation 𝜅p𝐴q and convert 𝐴 into a non-output attribute (line 5). To preserve the

equivalence of query results, we force a one-to-one mapping between domp𝐴q and domp𝑥𝐴q (line

6). The annotations of all tuples remain unchanged. By applying this procedure to every joint

output attribute, we ultimately obtain a query in which the set of unique attributes is exactly the

set of output attributes. Algorithm 5 then examines every relation 𝑒 P E˝ with 𝑒 X y ‰ H, for

which there is no other relation 𝑒 1 P E such that 𝑒 ´ y Ď 𝑒 1
(lines 7-15). For each such relation, we

add another relation 𝑒2
that includes a unique output attribute 𝑥𝑒 along with all output attributes

present in 𝑒 , and then convert all output attributes in 𝑒 into non-output attributes (line 10). To

preserve the equivalence of the query results, we force a one-to-one mapping between domp𝑒 X 𝑒2q

and domp𝑥𝑒q, and set the annotation of each tuple in 𝑅𝑒2 as 1 (lines 12-14).

Lemma 5.2. There exists a subset E˝ Ď E of fn-fhtw relations such that y Ď
Ť

𝑒PE˝
𝑒 .
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Proof of Lemma 5.2. As Q is acyclic, 𝑞rys is also acyclic. Every acyclic query has an optimal

fractional edge covering 𝜌˚
that is also integral [29], i.e., 𝜌˚p𝑒q “ 1 or 𝜌˚p𝑒q “ 0 for any 𝑒 P E. Let

E˝ Ď E be the set of relations for which 𝜌˚p𝑒q “ 1 holds for every 𝑒 P E˝. For every attribute𝐴 P y,
there must exist a relation 𝑒 P E˝ such that 𝐴 P 𝑒 . Implied by Corollary 3.5, |E˝| “ fn-fhtw. □

A1

A2

A3

C2
B1

C1 B3

B4

A4

B2

Fig. 8. An illustration of the
Separate procedure.

Example 5.3. We continue with Example 3.8 in which Q is not sep-

arated. Let E˝ “ t𝑒1, 𝑒2, 𝑒3, 𝑒6u be the chosen subset of relations in line

1. Recall that y “ t𝐴1, 𝐴2, 𝐴3,𝐶2u. There is only one way to assign: 𝐴1

to 𝑒1, 𝐴2 to 𝑒2, 𝐴3 to 𝑒3, and 𝐶2 to 𝑒6. As 𝐶2 is not unique, we introduce

a unique output attribute 𝐵4 to 𝑒6 and convert 𝐶2 into a non-output

attribute. As no relation contains all non-output attributes of 𝑒6, we

add 𝑒4 “ t𝐴4, 𝐵4u with a unique output attribute 𝐴4 to E and convert

𝐵4 into a non-output attribute. The resulting query pV 1, E1, y1q is sep-

arated, where V 1 “ t𝐴1, 𝐴2, 𝐴3, 𝐴4, 𝐵1, 𝐵2, 𝐵3, 𝐵4,𝐶1,𝐶2u, E1 “ t𝑒1 “ t𝐴1, 𝐵1u, 𝑒2 “ t𝐴2, 𝐵2u, 𝑒3 “

t𝐴3, 𝐵3u, 𝑒4 “ t𝐴4, 𝐵4u, 𝑒5 “ t𝐵1, 𝐵2,𝐶1,𝐶2u, 𝑒6 “ t𝐵3, 𝐵4,𝐶1,𝐶2uu and y1 “ t𝐴1, 𝐴2, 𝐴3, 𝐴4u.

Theorem 5.4. Any D-connected and cleansed acyclic query Q and an instance R of input size 𝑁 ,
can be transformed into a separated acyclic query Q1 and an instance R1 of input size 𝑂p𝑁 q within
𝑂p𝑁 q time, such that fn-fhtwpQq “ fn-fhtwpQ1q and QpRq “ Q1pR1q.

Thanks to these helper procedures, we can ultimately focus on separated acyclic queries at last,

which constitute the most technical part of this section. We delve into the structural properties of

separated acyclic queries in Section 5.2 and present our output-optimal algorithm in Section 5.3.

The main result achieved is summarised in Theorem 5.4.

Theorem 5.5. For any separated acyclic query Q, and an instance R of input size 𝑁 and output
size OUT, the query result QpRq can be computed in 𝑂

´

𝑁 ¨ OUT
1´ 1

fn-fhtwpQq

¯

time.

We now briefly analyze the complexity of Algorithm 3. Both Cleanse and Separate proce-

dures take 𝑂p𝑁 q time. From Theorem 5.5, each invocation of the HybridYannakakis procedure

takes 𝑂

ˆ

𝑁 ¨
ˇ

ˇQ1
𝑖

`

R1
𝑖

˘
ˇ

ˇ

1´ 1

fn-fhtwpQ1
𝑖

q

˙

time. Implied by Lemma 3.2 and Theorem 5.4, fn-fhtw
`

Q1
𝑖

˘

“

fn-fhtwpQ𝑖q ď fn-fhtwpQq. Moreover, when there are no dangling tuples,

ˇ

ˇQ1
𝑖

`

R1
𝑖

˘
ˇ

ˇ ď |QpRq|.

Putting everything together, we obtain:

Theorem 5.6. For any acyclic query Q, and an instance R of input size 𝑁 and output size OUT,
the query result QpRq can be computed in 𝑂

´

𝑁 ¨ OUT
1´ 1

fn-fhtwpQq ` OUT

¯

time, where fn-fhtwpQq

is the free-connex fractional hypertree width of Q.

5.2 Structural Properties of Separated AcyclicQueries
In the remainder of this section, we focus on separated acyclic queries. We discover a nice structural

property of separated acyclic queries regarding free-connex fractional hypertree width. Recall that

in a separated query Q “ pV, E, yq, every output attribute is unique, every unique attribute is

an output attribute, and for each relation 𝑒 P E with 𝑒 X y ‰ H, there exists some other relation

𝑒 1 P E ´ t𝑒u with 𝑒 ´ y Ď 𝑒 1
. In an arbitrary TD pT , 𝜒q, a node is said to be incident to another

node if an edge exists between them. For a node 𝑒 , let N𝑒 denote the set of nodes incident to it. A

node 𝑒 is a leaf if it is only incident to another node, i.e., |N𝑒 | “ 1.

Lemma 5.7. Any separated acyclic query Q “ pV, E, yq has a width-1 TD pT , 𝜒q such that there is
a one-to-one correspondence between the set of nodes in T and the set of relations containing output
attribute(s) in T . pT , 𝜒q is called a separated TD for Q.
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Proof of Lemma 5.7. Let E‚ “ t𝑒 P E : 𝑒 X y “ Hu be the set of relations without non-output

attributes. Implied by the GYO reduction [2], the join query pV ´ y, E‚q derived by relations in

E‚ is also acyclic since all (unique) output attributes can be removed first and then all relations

containing output attributes. Let pT‚, 𝜒‚q a width-1 TD for pV ´ y, E‚q. Note that there is a one-

to-one correspondence between nodes in T‚ and relations in E‚. For each 𝑒 P E ´ E‚, we identify

an arbitrary 𝑒 1 P E ´ t𝑒u such that 𝑒 ´ y Ď 𝑒 1
, and add 𝑒 as a child node of 𝑒 1

. It can be checked

that the resulting TD pT , 𝜒q is a valid width-1 TD for Q, and each relation containing an output

attribute is a leaf node. It remains to show that each leaf node of T also contains (unique) output

attributes. By contradiction, we assume that there exists some leaf node 𝑒 of T such that 𝑒 P E‚.

Let 𝑒 1
be the unique node incident to 𝑒 . As Q is cleansed, 𝑒 ´ 𝑒 1 ‰ H. Together with 𝑒 X y “ H, 𝑒

must contain some unique non-output attribute, leading to a contradiction. □

B3A3

A4B4

C1B3
C2B4

A1B1

B2C1

A2B2

B1C2

e2

e1

e3

e4

e5 e6

Fig. 9. A separated width-1 TD for
query in Figure 8. 𝑒1, 𝑒2, 𝑒3 and
𝑒4 are leaf nodes. E‚ “ t𝑒5, 𝑒6u.
All (unique) output attributes
𝐴1, 𝐴2, 𝐴3, 𝐴4 are highlighted in red.
Leaf nodes 𝑒1, 𝑒2, 𝑒3, 𝑒4 correspond
to relations 𝑒1, 𝑒2, 𝑒3, 𝑒4 . Removing
edge t𝑒5, 𝑒6u leads to two sub-trees,
where T𝑒5,𝑒6 contains nodes 𝑒1, 𝑒2, 𝑒5
and T𝑒6,𝑒5 contains nodes 𝑒3, 𝑒4, 𝑒6.
Q𝑒5,𝑒6 “

À

𝐵1,𝐵2

𝑅1p𝐴1, 𝐵1q ’

𝑅2p𝐴2, 𝐵2q ’ 𝑅5p𝐵1, 𝐵2,𝐶1,𝐶2q. And,
𝜙p𝑒5, 𝑒6q “ 𝜙p𝑒6, 𝑒5q “ 1

2
.

See an example in Figure 9. From Lemma 5.7, the number

of leaf nodes in T is exactly fn-fhtwpQq. For a pair of incident

nodes 𝑒1, 𝑒2, we use t𝑒1, 𝑒2u to denote the undirected edge be-

tween them, use p𝑒1, 𝑒2q (resp. p𝑒2, 𝑒1q) to denote the directed

edge from 𝑒1 to 𝑒2 (resp. from 𝑒2 to 𝑒1). Removing edge t𝑒1, 𝑒2u

separates T into two connected subtrees T𝑒1,𝑒2 and T𝑒2,𝑒1 , which
contains 𝑒1 and 𝑒2 separately. Let L𝑒1,𝑒2 be the set of leaf nodes

in T𝑒1,𝑒2 . For simplicity, we use𝜙𝑒1,𝑒2 “
|L𝑒

1
,𝑒
2

|

fn-fhtwpQq
to measure the

fraction of the number of nodes containing output attributes,

or equivalently the number of leaf nodes in T𝑒1,𝑒2 . These param-

eters will be frequently used for partitioning the input instance

in the next subsection. For each edge p𝑒1, 𝑒2q, the subtree T𝑒1,𝑒2
derives a sub-query Q𝑒1,𝑒2 :“

à

V´y´p𝑒1X𝑒2q

’
𝑢PnodespT𝑒

1
,𝑒
2
q
𝑅𝑒 , i.e.,

aggregates over all non-output attributes except the join at-

tributes between 𝑒1 and 𝑒2. Note that these join attributes will

appear in some nodes of T ´ T𝑒1,𝑒2 , and should be kept in the

subsequent computation.

5.3 Our Algorithm for Separated AcyclicQueries
Given an arbitrary separated acyclic query, we next characterize an optimal condition on the

input instances for which the runtime of the Yannakakis algorithm can be bounded as stated in

Theorem 5.5. In other words, the Yannakakis algorithm is already output-optimal in these cases.

We then explore how to partition an arbitrary input instance into a collection of sub-instances,

each of which satisfies this optimal condition individually. Likewise, we assume that a parameter

˜OUT is known such that ˜OUT ď OUT ď 𝑐 ¨ ˜OUT for some constant 𝑐 . This assumption can be

removed without increasing the complexity asymptotically [30]. Finally, we introduce the notion

of edge label, which encapsulates both data statistics and query structure.

Definition 5.8 (Edge Label). For a separated acyclic query Q and a separated width-1 TD pT , 𝜒q,

an instance R and parameter ˜OUT, an edge p𝑒1, 𝑒2q in T is

‚ large if |Q𝑒1,𝑒2pRq ˙ 𝑡 | ą ˜OUT

𝜙𝑒
1
,𝑒
2

holds for every tuple 𝑡 P 𝜋𝑒1X𝑒2𝑅𝑒1 ; and

‚ small if |Q𝑒1,𝑒2pRq ˙ 𝑡 | ď ˜OUT

𝜙𝑒
1
,𝑒
2

holds for every tuple 𝑡 P 𝜋𝑒1X𝑒2𝑅𝑒1 ; and

‚ unlabeled otherwise.

Furthermore, a small edge p𝑒1, 𝑒2q is limited if
ˇ

ˇ

À

𝑒1X𝑒2
Q𝑒1,𝑒2pRq

ˇ

ˇ ď ˜OUT

𝜙𝑒
1
,𝑒
2

.
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5.3.1 Optimal Condition of Yannakakis Algorithm
Now, we can see a natural connection between the Yannakakis algorithm and edge labels:

Lemma 5.9. For a separated acyclic query Q with a separated width-1 TD pT , 𝜒q, and an instance R
of input size 𝑁 and output size OUT, if edge p𝑒, 𝑒 1q is small, the intermediate join result 𝑅𝑒1 ’ Q𝑒,𝑒1 pRq

can be computed in 𝑂
`

𝑁 ¨ OUT𝜙𝑒,𝑒1
˘

time.

Proof of Lemma 5.9. Consider an arbitrary node 𝑒1 P nodespT𝑒,𝑒1 q. Let 𝑝𝑒1 be the parent node

of 𝑒1. The intermediate join result materialized at 𝑒1 is 𝑅𝑒1 ’ p’𝑒2 Q𝑒2,𝑒1q, where 𝑒2 is over all child

nodes of 𝑒1. Without dangling tuples, every tuple 𝑡 P 𝑅𝑒1 participates in at most ˜OUT

𝜙𝑒,𝑒1

query

result in Q𝑒1,𝑝𝑒
1

; otherwise, there must exist some tuple 𝑡 P domp𝑒 X 𝑒 1q that can participate in

more than ˜OUT

𝜙𝑒,𝑒1

query result in Q𝑒,𝑒1 , contradicting the fact that edge p𝑒, 𝑒 1q is small. As there

are at most 𝑁 tuples in 𝑅𝑒1 , the number of intermediate join results materialized at 𝑒1 is at most

𝑂
`

𝑁 ¨ OUT𝜙𝑒,𝑒1
˘

. When we move to 𝑒 1
, the size of 𝑅𝑒1 ’ Q𝑒,𝑒1 pRq can be bounded similarly. □

Recall that 𝜙𝑒,𝑒1 “ 1 ´ 1

fn-fhtw if 𝑒 1
is a leaf node. Hence, we come to the optimal condition below:

Corollary 5.10 (Optimal Condition for Yannakakis). For a separated acyclic query Q “

pV, E, yq with a separated width-1 TD pT , 𝜒q, and an instance R of input size 𝑁 and output size
OUT, if there is a leaf node 𝑒 1 of T such that edge p𝑒, 𝑒 1q is small for the only node 𝑒 1 incident to 𝑒 ,

then QpRq can be computed in 𝑂
´

𝑁 ¨ OUT
1´ 1

fn-fhtwpQq

¯

time.

5.3.2 Partition Separated AcyclicQueries
The input instance does not necessarily meet the optimal condition above, so we cannot apply the

Yannakakis algorithm directly. Even worse, it is unknown how to efficiently decide the label of each
edge since the definition of edge labeling is based on the sub-query, which may be too expensive to

compute. Consequently, the most technically challenging step is to identify an efficient ordering

for labeling the edges and to iteratively isolate a sub-instance once it meets the optimal condition

specified in Corollary 5.10.

As described in Algorithm 6, let pT , 𝜒q be a separated width-1 TD for Q (line 1), with all edges

unlabeled initially. Again, there is a one-to-one correspondence between relations in E and nodes in

T . Hence, we also use 𝑒 to denote the node in T that corresponds to relation 𝑒 P E. We put pT ,Rq

into a candidate set P of instances to be partitioned (line 2). In general, consider an arbitrary pair

pT 1,R1q P P. From Lemma 5.11, we apply limited-imply-limited rule to infer edge labels (lines 5-6).

If it meets the optimal condition, we compute the result immediately (lines 7-8) and remove it from

P (line 16). Otherwise, we further partition it (lines 9-15). More specially, we pick a non-labeled

edge p𝑒1, 𝑒2q such that every other incoming edge to 𝑒1 is small, i.e., edge p𝑒3, 𝑡1q is small for each

node 𝑒3 P N𝑒1 ´ t𝑒2u (line 10). We compute Q𝑒1,𝑒2pR1q using the Yannakakis algorithm along T𝑒1,𝑒2
rooted at 𝑒1 (line 11). A tuple 𝑡 P domp𝑒1 X 𝑒2q is heavy if |Q𝑒1,𝑒2pR1q ˙ 𝑡 | ą ˜OUT

𝜙𝑒
1
,𝑒
2

, and light
otherwise. Now, we construct two sub-instances for R1

, which contain heavy and light tuples in

𝑅𝑒1 separately (line 15), and two copies of T 1
in which edge p𝑒1, 𝑒2q is further labeled as large and

small separately (line 13-14). By Lemma 5.12, we can apply large-reverse-limited rule to infer p𝑒2, 𝑒1q

as limited when p𝑒1, 𝑒2q is labeled as large (line 14). We add these two sub-instances into P (line 15)

and also remove pT 1,R1q from P (line 16). We continue applying this procedure to every remaining

instance in P until P becomes empty (line 3).

Lemma 5.11 (Limited-Imply-Limited). For any node 𝑒1, if there exists a node 𝑒2 P N𝑒1 such that
edge p𝑒3, 𝑒1q is limited for every node 𝑒3 P N𝑒1 ´ t𝑒2u, then edge p𝑒1, 𝑒2q must be limited.
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Algorithm 6: HybridYannakakis pQ “ pV, E, yq,Rq

1 pT , 𝜒q Ð a separated width-1 TD of Q with all edges of T non-labeled;

2 P Ð tpT ,Ru, S Ð 0;
3 while P ‰ H do
4 pT 1,R1q Ð an arbitrary pair in P;

5 while D non-labeled p𝑒1, 𝑒2q in T 1 such that p𝑒3, 𝑒1q is limited for each 𝑒3 P N𝑒1 ´ t𝑒2u do
6 Label edge p𝑒1, 𝑒2q as limited;

7 if there is a leaf node 𝑒1 with small (or limited) edge p˚, 𝑒1q in T 1 then
8 S Ð S ‘ QpR1q for computing QpR1q via Yannakakis algorithm on T rooted at 𝑒1;

9 else
10 p𝑒1, 𝑒2q Ð a non-labeled edge in T 1

s.t. p𝑒3, 𝑒1q is small for each 𝑒3 P N𝑒1 ´ t𝑒2u;

11 Compute Q𝑒1,𝑒2pR1q by the Yannakakis algorithm on T𝑒1,𝑒2 rooted at 𝑒1;

12 H Ð

!

𝑡 P domp𝑒1 X 𝑒2q : |𝜎𝑒1X𝑒2“𝑡Q𝑒1,𝑒2pR1q| ą ˜OUT

𝜙𝑒
1
,𝑒
2

)

;

13 T 1
1

Ð T 1
with p𝑒1, 𝑒2q, p𝑒2, 𝑒1q labeled as large, limited separately;

14 T 1
2

Ð T 1
with p𝑒1, 𝑒2q labeled as small;

15 P Ð P Y
␣`

T 1
1
,R1 ´ t𝑅𝑒1u Y t𝑅𝑒1 ˙ Hu

˘

,
`

T 1
2
,R1 ´ t𝑅𝑒1u Y t𝑅𝑒1 Ź Hu

˘(

;

16 P Ð P ´ tpT 1,R1qu;

17 return S;

Proof of Lemma 5.11. For Q𝑒1,𝑒2 , we observe the following:

ˇ

ˇ

ˇ

ˇ

ˇ

à

V´y
Q𝑒1,𝑒2

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ź

𝑒3PN𝑒
1

´t𝑒2u

ˇ

ˇ

ˇ

ˇ

ˇ

à

V´y
Q𝑒3,𝑒1

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ź

𝑒3PN𝑒
1

´t𝑒2u

OUT
𝜙𝑒

3
,𝑒
1 ď OUT

𝜙𝑒
1
,𝑒
2

where the first inequality follows that

ď

𝑒PT𝑒
1
,𝑒
2

p𝑒 X yq “
ď

𝑒3PN𝑒
1

´t𝑒2u

ď

𝑒PT𝑒
1
,𝑒
3

p𝑒 X yq and the second

inequality follows that

ÿ

𝑒3PN𝑒
1

´t𝑒2u

𝜙𝑒3,𝑒1 “ 𝜙𝑒1,𝑒2 . By definition, p𝑒1, 𝑒2q must be limited. □

Lemma 5.12 (Large-Reverse-Limited). If edge p𝑒1, 𝑒2q is large, then edge p𝑒2, 𝑒1q must be limited.

Proof of Lemma 5.12. Consider an arbitrary tuple 𝑡 P domp𝑒1 X 𝑒2q. As p𝑒1, 𝑒2q is large, 𝑡 can

be joined with at least OUT
𝜙𝑒

1
,𝑒
2 query result of Q𝑒1,𝑒2 . Without dangling tuples, every tuple

𝑡 1 P
À

V´y Q𝑒2,𝑒1 appears together with at least OUT
𝜙𝑒

1
,𝑒
2 tuples from

À

V´y Q𝑒1,𝑒2 in the final

query result. This way, |
À

V´y Q𝑒2,𝑒1 | ď OUT
1´𝜙𝑒

1
,𝑒
2 “ OUT

𝜙𝑒
2
,𝑒
1 . Hence, p𝑒2, 𝑒1q is limited. □

Example 5.13. We continue the example in Figure 9. Initially, all edges are unlabeled in (9.1). We

start with applying line 13 to label edge p𝑒1, 𝑒5q since N𝑒1 ´ t𝑒5u “ H. In (9.2), the instance with

large edge p𝑒1, 𝑒5q and limited edge p𝑒5, 𝑒1q already meets the optimal condition. The remaining

instance has a small edge p𝑒5, 𝑒1q. We can apply a similar argument to edges p𝑒2, 𝑒5q, p𝑒3, 𝑒6q and

p𝑒4, 𝑒6q. In (9.3), we are left with the remaining instance with small edges p𝑒1, 𝑒5q, p𝑒2, 𝑒5q, p𝑒3, 𝑒6q

and p𝑒4, 𝑒6q. Then, we can apply line 13 to label edge p𝑒5, 𝑒6q.

In (9.4), for the instance with large edge p𝑒5, 𝑒6q and limited edge p𝑒6, 𝑒5q, we can apply line 13

to partition both edges p𝑒5, 𝑒1q and p𝑒5, 𝑒2q. Suppose we partition edge p𝑒5, 𝑒1q wlog. In (9.6), the

instance with small edge p𝑒5, 𝑒1q already meets the optimal condition. In (9.7), we are left with an
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Fig. 10. An illustration of the partition procedure on the query in Figure 9.

instance with large edge p𝑒5, 𝑒1q and limited edge p𝑒1, 𝑒5q. We can apply the limited-imply-limited

rule to infer edge p𝑒5, 𝑒2q as limited. This instance also meets the optimal condition.

In (9.5), for the other instance with small edge p𝑒5, 𝑒6q, we can apply line 13 to label both edges

p𝑒6, 𝑒4q and p𝑒6, 𝑒5q. Suppose we label edge p𝑒6, 𝑒4q wlog. In (9.8), the instance with small edge p𝑒6, 𝑒4q

meets the optimal condition. We can apply a similar argument to edge p𝑒6, 𝑒3q. In (9.9), the remaining

instance has large edges p𝑒6, 𝑒3q and p𝑒6, 𝑒4q, as well as limited edges p𝑒3, 𝑒6q and p𝑒4, 𝑒6q. We can

apply the limited-imply-limited rule to infer edge p𝑒6, 𝑒5q as limited. Now, we can apply line 13

to label edges p𝑒5, 𝑒1q and p𝑒5, 𝑒2q. Suppose we label edge p𝑒5, 𝑒1q. In (9.10), the instance with small

edge p𝑒5, 𝑒1q already meets the optimal condition. In (9.11), we are left with the instance with large

edge p𝑒3, 𝑒1q and limited edge p𝑒3, 𝑒2q. Then, we can apply the limited-imply-limited rule to infer

edge p𝑒3, 𝑒2q as limited. This instance also meets the optimal condition. Now, P “ H, and we are

done with the partition procedure.

5.3.3 Analysis
To show the correctness of Algorithm 6,we first need to prove the following result:

Lemma 5.14. In Algorithm 6, for any pT 1,R1q P P, either line 8, line 10, or line 13 can be applied.
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Algorithm 7: IdentifyLeafpQ,R1,T 1q

1 while T 1 is not a single node do
2 Root T 1

at an arbitrary node 𝑟 such that 𝑟 X y ‰ H;

3 if D node 𝑒 with its parent 𝑝𝑒 such that edge p𝑒, 𝑝𝑒q is large then T 1 Ð T 1 ´ T 1
𝑒,𝑝𝑒

;

4 else return 𝑟 ;

5 return the single node in T 1
;

Proof of Lemma 5.14. Consider an arbitrary instanceR1
with a partially labeled separatedwidth-

1 TD pT 1, 𝜒 1q. By contradiction, we assume that neither line 8, line 10, nor line 13 of Algorithm 6

can be applied. We next show how to identify a leaf node 𝑒 of T 1
such that p˚, 𝑒q is small; hence, R1

already meets the optimal condition, leading to a contradiction.

As shown in Algorithm 7, the high-level idea is to conceptually remove nodes in T 1
, until a single

node is left, which is exactly the leaf node as desired. We root T 1
at an arbitrary node 𝑟 P nodespT 1q

such that 𝑟 X y ‰ H. Let 𝑝𝑒 be the parent of 𝑒 in this rooted tree. If there exists a node 𝑒 such that

p𝑒, 𝑝𝑒q is large, we simply remove the whole subtree T 1
𝑒,𝑝𝑒

and continue the process. Otherwise,

every edge p𝑒, 𝑝𝑒q is small, including the edge p˚, 𝑟q incident to 𝑟 , hence 𝑟 is returned.

It remains to show that a node 𝑟 P nodespT 1q with 𝑟 X y ‰ H can always be found at line 2.

By contradiction, we assume that such a node does not exist. In the execution process above, T 1

is always a connected subtree. For clarity, let T 1
1
be the state of T 1

at some point and let T ´ T 1
1

be the subtree(s) removed by the process above. As T 1
1
is connected and T 1

1
does not contain any

leaf nodes of T , T ´ T 1
1
must contain all leaf nodes and hence be disconnected. Moreover, for

each pair of nodes 𝑒1 P nodespT 1
1

q, 𝑒2 P nodespT ´ T 1
1

q, the subtree T 1
𝑒2,𝑒1

has been removed due

to the fact that edge p𝑒1, 𝑒2q is large at line 3. This way, Lemma 5.15 is violated on T 1
, leading to a

contradiction. Hence, it is always feasible to find a node 𝑟 P nodespT 1q with 𝑟 X y ‰ H. □

Lemma 5.15 (Not-All-Large). Consider a connected subtree T1 of T that does not contain any
leaf node of T . For any instance R1 with non-empty query result, there must exist a pair of nodes
𝑒1 P nodespT1q, 𝑒2 P nodespT ´ T1q such that p𝑒1, 𝑒2q is an edge in T but not large.

Proof of Lemma 5.15. Let 𝑈1 be the set of nodes in T1 that are incident to some nodes in T2.
Let 𝑈2 be the set of nodes in T ´ T1 that are incident to some nodes in T1. Note that there is a
one-to-one correspondence between𝑈1 and 𝑈2. Let 𝑒2 P 𝑈2 be the corresponding node for 𝑒1 P 𝑈1,

i.e., p𝑒1, 𝑒2q is an edge. By contradiction, suppose every such edge p𝑒1, 𝑒2q is large for every 𝑒1 P 𝑈1.

Implied by Lemma 5.12, every such edge p𝑒2, 𝑒1q is limited. Consider an arbitrary node 𝑒˚
1

P 𝑈1 with

its corresponding node 𝑒˚
2

P 𝑈2. We note that for every tuple in 𝑡 P domp𝑒˚
1

X 𝑒˚
2

q,

ˇ

ˇ

ˇ
𝜎𝑒˚

1
X𝑒

˚
2

“𝑡Q𝑒
˚
1
,𝑒

˚
2

pRq

ˇ

ˇ

ˇ
ď

ź

𝑒1P𝑈1

ˇ

ˇ

ˇ

ˇ

ˇ

à

V´y
Q𝑒2,𝑒1pRq

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ź

𝑒1P𝑈1´t𝑒
˚
1

u

˜OUT

𝜙𝑒
2
,𝑒
1 ď ˜OUT

𝜙
𝑒

˚
1
,𝑒

˚
2

where the last inequality is implied by the fact that

ÿ

𝑒1P𝑈1´t𝑒
˚
1

u

|L𝑒2,𝑒1 | “

ˇ

ˇ

ˇ
L𝑒

˚
1
,𝑒

˚
2

ˇ

ˇ

ˇ
. Hence, edge

p𝑒˚
1
, 𝑒˚

2
q is not large, leading to a contradiction. □

Lemma 5.16. Algorithm 6 will terminate after running the while-loop at most 𝑂p2|E|q iterations.

Proof of Lemma 5.16. As each edge will be labeled once, and labeling each edge can lead to at

most 2 sub-instances, the total number of sub-instances in P is𝑂p2|E|q, where the number of edges
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in T is bounded by the number of relations in Q. Each iteration removes at least one sub-instance

from P. Moreover, when a sub-instance is removed, it won’t be added back to P. Hence, P will

become H after at most 𝑂p2|E|q iterations. □

Next, we analyze the runtime of Algorithm 6. Let’s first focus on line 14. For any node 𝑒3 P

N𝑒1 ´t𝑒2u, as edge p𝑒3, 𝑒1q is small, the query result Q𝑒3,𝑒1pR1q can be computed in𝑂
`

𝑁 ¨ OUT𝜙𝑒
3
,𝑒
1

˘

time following Lemma 5.10. To compute Q𝑒1,𝑒2pR1q, the Yannakakis algorithm needs to materialize

the following intermediate join result: 𝑅𝑒1 ’

´

’𝑒3PN𝑒
1

´t𝑒2u Q𝑒3,𝑒1pR1q

¯

. As there are 𝑁 tuples in

𝑅𝑒1 , and each tuple in 𝑅𝑒1 can be joined with at most

ź

𝑒3PN𝑒
1

´t𝑒2u

˜OUT

𝜙𝑒
3
,𝑒
1 “ ˜OUT

𝜙𝑒
1
,𝑒
2

tuples in this

intermediate result, its size can be bounded by 𝑂
`

𝑁 ¨ OUT𝜙𝑒
1
,𝑒
2

˘

. The cost of line 14 is bounded by

Lemma 5.10. The cost of lines 15-18 is bounded by𝑂p𝑁 q. All other lines take𝑂p1q time. As analyzed

above, the number of the while-loop iterations is 𝑂p2|E|q, still a constant. So, the partitioning

procedure takes 𝑂

´

𝑁 ¨ OUT
1´ 1

fn-fhtwpQq

¯

time. Putting everything together, we obtain:

Lemma 5.17. For a separated acyclic query Q with a separated width-1 TD pT , 𝜒q, an arbitrary

instance R can be partitioned into𝑂p1q sub-instances R1,R2, ¨ ¨ ¨ ,Rℎ within𝑂
´

𝑁 ¨ OUT
1´ 1

fn-fhtwpQq

¯

time such that QpRq “
À

𝑖Prℎs QpR𝑖q, and each R𝑖 satisfies Corollary 5.10 together with T .

Combining Lemma 5.17 and Corollary 5.10, we complete the proof of Theorem 5.5.

6 CYCLIC QUERIES
In this section, we turn to cyclic queries. As mentioned, cyclic queries are usually tackled with tree

decomposition techniques. Similarly, we can derive output-sensitive algorithms for cyclic queries

by replacing the Yannakakis algorithm with our new output-optimal algorithm.

For an arbitrary queryQ “ pV, E, yq and a TD pT , 𝜒q, we define another queryQT “ pV, t𝜒p𝑢q :

𝑢 P nodespT qu, yq, i.e., each node in the TD defines a relation. Given each instance R for Q, we
define another instance RT for QT as follows. For each node 𝑢 P nodespT q, we get a relation

𝑅𝑢 :“’𝑒PE 𝜋𝜒p𝑢qX𝑒𝑅𝑒 as the result of the corresponding sub-query 𝑞r𝜒p𝑢qs. For each relation 𝑒 P E,
we assign it to one specific node 𝑢 P nodespT q such that 𝑒 Ď 𝜒p𝑢q. The annotations of tuples in 𝑅𝑒
are defined as follows: if no relation is assigned to 𝑢, every tuple 𝑡 has its annotation 𝑤p𝑡q “ 1;
otherwise, every tuple 𝑡 has its annotation 𝑤p𝑡q “

Â

𝑒 𝑤p𝜋𝑒𝑡q over all relations 𝑒 assigned to 𝑢.

After getting the induced query QT and instance RT , we simply invoke our new algorithm for

acyclic queries in Section 5 to compute the query result QTpRTq, which is essentially QpRq.

Note that the input size of RT is 𝑂
`

𝑁widthpT,𝜒q
˘

, and the output size is OUT. Plugging into

Theorem 5.6, we obtain the time complexity as𝑂

´

𝑁widthpT,𝜒q ¨ max

!

1,OUT
1´ 1

fn-fhtwpQT q

)

` OUT

¯

.

As the query size is constant, we can find within 𝑂p1q time the tree decomposition that minimizes

the complexity formula above. Putting everything together, we obtain:

Theorem 6.1. For a query Q “ pV, E, yq, and an instance R of input size 𝑁 and output size OUT,

the query result QpRq can be computed in𝑂
ˆ

min

pT,𝜒q
𝑁widthpT,𝜒q ¨ max

!

1,OUT
1´ 1

fn-fhtwpQT q

)

` OUT

˙

time, where pT , 𝜒q is over all possible TDs of Q.

See Example 6.3. People have also exploited the power of hybrid TDs to speed up query processing
in the literature. Inheriting the idea of [39], we first define the notion of TD-coverage as a set of
TDs pT1, 𝜒1q, pT2, 𝜒2q, ¨ ¨ ¨ , pTℎ, 𝜒ℎq for Q such that QpRq “

À

𝑖Prℎs QT𝑖 pRT𝑖 q. Then, we can apply

our new algorithm for acyclic queries to each TD pT𝑖 , 𝜒𝑖q and aggregate the results over all TDs.

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 104. Publication date: May 2025.



Output-Optimal Algorithms for Join-AggregateQueries 104:21

Theorem 6.2. For a query Q “ pV, E, yq, and an instance R of input size 𝑁 and output size OUT,
the query result QpRq can be computed in

𝑂

ˆ

min

tpT1,𝜒1q,pT2,𝜒2q,¨¨¨ ,pTℎ,𝜒ℎqu
max

𝑖Prℎs
𝑁widthpT𝑖 ,𝜒𝑖q ¨ OUT

1´ 1

fn-fhtwpQT𝑖 q
` OUT

˙

time, where tpT1, 𝜒1q, pT2, 𝜒2q, ¨ ¨ ¨ , pTℎ, 𝜒ℎqu is over all possible TD-coverages of Q.

If we only consider the parameter widthpT𝑖 , 𝜒𝑖q, the minimum TD -coverage can be identified,

and the corresponding cost of is captured by the #submodular width [39]. However, we need to

consider both widthpT𝑖 , 𝜒𝑖q and fn-fhtwpQT𝑖 q to minimize the cost formula above. This question is

interesting but very challenging, which we leave as future work.

B3A3A1B1

B2

A2B2

B1B3

u2

u1 u3

u4

Fig. 11. A TD for a
cyclic query.

Example 6.3. Consider a cyclic query Q “ pV, E, yq, whereV “ t𝐴1, 𝐴2,

𝐴3, 𝐵1, 𝐵2, 𝐵3u, E “ tt𝐴1, 𝐵1u, t𝐴2, 𝐵2u, t𝐴3, 𝐵3u, t𝐵1, 𝐵2u, t𝐵2, 𝐵3u, t𝐵1, 𝐵3uu

and y “ t𝐴1, 𝐴2, 𝐴3u. Figure 11 shows a TD pT , 𝜒q for Q: 𝜒p𝑢1q “ t𝐴1, 𝐵1u,

𝜒p𝑢2q “ t𝐴2, 𝐵2u, 𝜒p𝑢3q “ t𝐴3, 𝐵2u, and 𝜒p𝑢4q “ t𝐵1, 𝐵2, 𝐵3u. Moreover,

widthpT , 𝜒q “ #subwpQq “ 3

2
and #fn-subwpQq “ fn-fhtwpQTq “ 3. Our

new algorithm can compute it in 𝑂

´

𝑁
3

2 ¨ max

!

1,OUT
2

3

)

` OUT

¯

time,

strictly improving the previous result 𝑂 p𝑁 3q or 𝑂

´

𝑁
3

2 ¨ max t1,OUTu

¯

.

7 LOWER BOUND
In this section, we will show our lower bound for semi-ring algorithms computing acyclic join-

aggregate queries. Recall that semiring algorithms work with semiring elements as an abstract type

and can only copy them from existing semiring elements or combine them using ‘ or b. No other

operations on semi-ring elements are allowed, such as division, subtraction, or equality check.

Theorem 7.1. For an arbitrary self-join-free acyclic query Q “ pV, E, yq, given any parameters
1 ď 𝑁 and OUT ď max

R1Pℜp𝑁 q
|QpR1q|, there exists an instance R of input size 𝑁 and output size OUT

such that any semi-ring algorithm computing QpRq requires at least Ω
´

𝑁 ¨ OUT
1´ 1

fn-fhtwpQq ` OUT

¯

time, where fn-fhtwpQq is the free-connex fractional hypertree width of Q, and ℜp𝑁 q is the set of all
instances for Q of input size 𝑁 .

In [7], it has been shown that for the matrix query Qmatrix “
À

𝐵 𝑅1p𝐴, 𝐵q ’ 𝑅2p𝐵,𝐶q, and

parameters 1 ď 𝑁 and OUT ď 𝑁 2
, there exists an instance R of input size 𝑁 and output size OUT

such that any semiring algorithm for computing QmatrixpRq requires Ω
`

𝑁 ¨
?
OUT

˘

time. A similar

argument has been extended to star queries:

Qstar “
à

𝐵

𝑅1p𝐴1, 𝐵q ’ 𝑅2p𝐴2, 𝐵q ’ ¨ ¨ ¨ ’ 𝑅𝑘p𝐴𝑘 , 𝐵q

which will used to establish our new lower bound for general acyclic queries.

Lemma 7.2. For Qstar of 𝑘 relations, any parameters 1 ď 𝑁 and OUT ď 𝑁𝑘 , there exists an instance
Rstar of input size 𝑁 and output sizeOUT such that any semiring algorithm for computing QstarpRstarq

requires at least Ω
´

𝑁 ¨ OUT1´ 1

𝑘

¯

time.

Note that Lemma 7.2 has been proved for Qmatrix when 𝑘 “ 2 by Pagh and Stockel [51]. Below,

we simply generalized their proof to Qstar.
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Proof of Lemma 7.2. We construct a hard instance Rstar of input size 𝑁 and output size OUT

for Qstar as follows. There are OUT

1

𝑘 distinct values in each attribute 𝐴𝑖 for 𝑖 P r𝑘s. There are
𝑁

𝑘¨OUT1{𝑘 distinct values in attribute 𝐵. Each relation 𝑅𝑖 is a Cartesian product between 𝐴𝑖 and 𝐵.

It can be checked that each relation contains exactly
𝑁
𝑘
tuples, so the input size of R is exactly

𝑁 . The query result of QstarpRstarq is all combinations of values in attributes 𝐴1, 𝐴2, ¨ ¨ ¨ , 𝐴𝑘 , and

the output size is exactly OUT. On this hard instance Rstar, for each query result p𝑎1, 𝑎2, ¨ ¨ ¨ , 𝑎𝑘q P

domp𝐴1qˆdomp𝐴2qˆ¨ ¨ ¨ˆdomp𝐴𝑘q, its annotation is defined as
à

𝑏Pdomp𝐵q

â

𝑖Pr𝑘s

𝑤p𝑎𝑖 , 𝑏q, which takes

at least |domp𝐵q| operations to compute𝑤p𝑎1, 𝑎2, ¨ ¨ ¨ ,𝑤𝑘 , 𝑏q “
Â

𝑖Pr𝑘s𝑤p𝑎𝑖 , 𝑏q for each𝑏 P domp𝐵q.

Note that every pair of query results do not share any common operations.

Similar to [51] we require the algorithm to work over fields of infinite size such as real numbers.

We consider each output value as a polynomial over nonzero entries of the input matrices. Again,

by the Schwartz-Zippel theorem [44], two polynomials agree on all inputs if and only if they are

identical. Since we are working in the semiring model, the only way to get the annotation for the

query result p𝑎1, 𝑎2, ¨ ¨ ¨ , 𝑎𝑘q in an output polynomial is to directly multiply these input entries.

That means that to compute a query result p𝑎1, 𝑎2, ¨ ¨ ¨ , 𝑎𝑘q, one needs to compute a polynomial

that is identical to the sum of elementary products

à

𝑏Pdomp𝐵q

â

𝑖Pr𝑘s

𝑤p𝑎𝑖 , 𝑏q. Summing over all query

results, the number of operations required is at least 𝑁 ¨ OUT1´ 1

𝑘 . Hence, any semiring algorithm

requires at least Ω
´

𝑁 ¨ OUT1´ 1

𝑘

¯

time for computing QstarpRstarq. □

Lemma 7.3. For any D-connected acyclic query Q “ pV, E, yq, there exists a subset 𝑆 Ď y of
fn-fhtwpQq attributes such that no pair of them appear in the same relation from E.

Proof of Lemma 7.3. Note that 𝑞rys is also acyclic. Initially, we set 𝑆 “ H. As shown in [29],

the following greedy strategy leads to an optimal fractional edge covering for 𝑞rys that is also

integral. It iteratively performs the following two procedures: (i) removes a relation 𝑒 if there exists

another relation 𝑒 1
such that 𝑒 Ď 𝑒 1

; (ii) if there exists a relation 𝑒 containing some unique attribute,

we remove relation 𝑒 as well as all attributes in 𝑒 , and add an arbitrary attribute in 𝑒 to 𝑆 . It can be

easily checked that |𝑆| “ fn-fhtw, and no pair of them appears in the same relation from E. □

Proof of Theorem 1.2. First, Ωp𝑁 ` OUTq is a trivial lower bound. Hence, it suffices to show

the lower bound Ω
´

𝑁 ¨ OUT
1´ 1

fn-fhtwpQq

¯

when OUT ă 𝑁 fn-fhtwpQq
. We will prove it via three steps:

Step 1. Consider any D-connected and cleansed query Q “ pV, E, yq. Suppose we are given

parameters 1 ď 𝑁 and OUT ď 𝑁 fn-fhtwpQq
. We show a reduction from Q to Qstar with fn-fhtwpQq

relations. Implied by Lemma 7.3, let 𝑆 Ď y be the set of output attributes such that no pair appears

in the same relation, and |𝑆| “ fn-fhtwpQq. Suppose we are given a hard instance Rstar for Qstar
with fn-fhtwpQq relations, which has input size 𝑁 and output size OUT. We next construct an

instance R for Q as follows.

Each output attribute 𝐴 P y ´ 𝑆 contains one distinct value t˚u. Each output attribute 𝐴 P 𝑆

containsOUT

1

fn-fhtwpQq
distinct values. Each non-output attribute𝐵 P pV´yq contains 𝑁

|E|¨OUT
1

fn-fhtwpQq

distinct values. For each relation 𝑅𝑒 , |𝑒 X 𝑆| ď 1. The projection of 𝑅𝑒 onto all non-output attributes

contains tuples in a form of p𝑏𝑖 , 𝑏𝑖 , ¨ ¨ ¨ , 𝑏𝑖q, for 𝑖 P

”

𝑁 ¨ OUT
1´ 1

fn-fhtwpQq

ı

. The projection of 𝑅𝑒 onto

all output attributes is the full Cartesian product. Moreover, 𝑅𝑒 “
`

𝜋y𝑅𝑒
˘

ˆ
`

𝜋V´y𝑅𝑒
˘

. For each

output attribute 𝐴 P 𝑆 , we choose an arbitrary relation 𝑒 P E such that 𝐴 P 𝑒 . Note that all chosen

relations are also distinct. Let E𝑆 be the set of chosen relations. We specify an arbitrary one-to-one

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 104. Publication date: May 2025.



Output-Optimal Algorithms for Join-AggregateQueries 104:23

mapping from relations in Qstar and relations in E𝑆 , say 𝑅𝑖 corresponds to 𝑆𝑖 . From our construction

above, there is also a one-to-one mapping between tuples in 𝑅𝑖 and 𝑆𝑖 . We just set the annotation

of a tuple 𝑡 P 𝑆𝑖 as the same as 𝑡 1 P 𝑅𝑖 , if 𝑡 corresponds to 𝑡
1
. For every remaining relation 𝑅𝑒 in R,

we simply set the annotation of each tuple as 1. As |𝑒 X 𝑆| ď 1 for each relation 𝑒 P E, it can be

checked that each relation contains at most 𝑁 tuples. The input size of the constructed instance is

𝑁 , and the output size is exactly OUT.

It is not hard to see that

à

V´𝑆

QpRq “ QstarpRstarq. Any semiring algorithm that compute QpRq

within 𝑂

´

𝑁 ¨ OUT
1´ 1

fn-fhtwpQq

¯

time, can also compute QstarpRstarq within 𝑂

´

𝑁 ¨ OUT
1´ 1

fn-fhtwpQq

¯

time. Hence, this automatically follows Lemma 7.2.

Step 2. Consider any D-connected but not cleansed query Q “ pV, E, yq. Let Q1 “ pV 1, E1, yq be

the cleansed version of Q, and R1
be the hard instance for Q1

as constructed above. Each non-output

attribute 𝐵 P V ´ V 1
contains one distinct value t˚u. For each 𝑒 1 P E ´ E1

, there must exist a

relation 𝑒 P E1
such that 𝑒 1 Ď 𝑒 . The relation 𝑅𝑒1 is just a projection of 𝑅𝑒 onto attribute 𝑒 1

, where

each tuple has its annotation as 1. It is not hard to see

à

V´y1

Q1pR1q “
à

V´y
QpRq. Any semiring

algorithm that can compute QpRq within 𝑂

´

𝑁 ¨ OUT
1´ 1

fn-fhtwpQq

¯

time, can also compute Q1pR1q

within 𝑂

´

𝑁 ¨ OUT
1´ 1

fn-fhtwpQq

¯

time. Hence, this automatically follows Step 1.

Step 3. Consider any D-disconnected acyclic query Q “ pV, E, yq. Let Q1,Q2, ¨ ¨ ¨ ,Qℎ be the D-

connected subqueries ofQ. Wlog, assume fn-fhtwpQ1q “ fn-fhtwpQq. Suppose we are given any pa-

rameters 1 ď 𝑁 andOUT ď 𝑁 fn-fhtwpQq
. There exists an instance R1 of input size 𝑁 and output size

OUT such that any semiring algorithm computing Q1pR1q requires Ω
´

𝑁 ¨ OUT
1´ 1

fn-fhtwpQq ` OUT

¯

time. We can extend the sub-instance R1 to an instance R to Q as follows. Each attribute inV ´V1

contains one distinct value t˚u. Consider an arbitrary relation 𝑒 P E ´ E1. If 𝑒 X V1 “ H,

relation 𝑅𝑒 only contains one tuple in a form of p˚, ˚, ¨ ¨ ¨ , ˚q. Otherwise, 𝑒 X V1 Ď y. In this

case, 𝑅𝑒 “ p𝜋y𝑅𝑒q ˆ p𝜋V´y𝑅𝑒q. Note that each tuple in 𝑅𝑒 has its annotation as 1. It is not

hard to see

à

V1´y1

Q1pR1q “
à

V´y
QpRq. Any semiring algorithm that can compute QpRq within

𝑂

´

𝑁 ¨ OUT
1´ 1

fn-fhtwpQq ` OUT

¯

time, also computesQ1pR1qwithin𝑂

´

𝑁 ¨ OUT
1´ 1

fn-fhtwpQq ` OUT

¯

time. Hence, this automatically follows Step 2. □

8 RELATEDWORK
Efficient evaluation of join-aggregate queries. Olteanu and Závodnỳ [49] investigate the

problem of representing and computing results of conjunctive queries in a factorized form. They

introduce the width 𝑠ÒpQq, which captures both the time complexity for computation and the

size of factorized representations for conjunctive queries. They then establish a mapping between

this notion of width and the free-connex fractional hypertree width. Subsequent work further

explores the computation of aggregates over factorized databases [53]. In particular, aggregate

functions such as SUM, PROD, MIN, and MAX can be evaluated on these factorized representations

within 𝑂p𝑁 𝑠Òp𝑄qq time. Later, Abo Khamis et al. [3] extended these results by generalizing the

approach to arbitrary semirings. Specifically, they define the FAQ query that considers multiple

semirings simultaneously, and show that it can be computed in 𝑂p𝑁 faqwpQq ` OUTq time, where

faqwpQq denotes the FAQ-width of the query.

Extension of the Yannakakis Algorithm. Recent studies extend the Yannakakis algorithm to

support a variety of operators and scenarios, including projections [9], unions [18], differences [32],
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comparisons [57], dynamic query processing [35, 58], massively parallel query processing [4, 33]

and secure query processing [59, 60]. Moreover, several works focus on efficiently implementing

the Yannakakis algorithm within practical data systems [13, 15, 62, 64].

Fast matrix multiplication for conjunctive queries. As mentioned in Section 1, the semi-ring

lower bound can be surpassed on specific semirings when certain conditions are met, as is the

case for conjunctive queries defined over the Boolean ring. Recently, fast matrix multiplication has

been widely adopted to accelerate the processing of conjunctive queries. Suppose that computing

two rectangular matrices of size 𝑛𝑎 ˆ 𝑛𝑏 and 𝑛𝑏 ˆ 𝑛𝑐 can be done in 𝑂p𝑛𝜔p𝑎,𝑏,𝑐q`𝑜p1qq time. For

simplicity, we use 𝜔 to denote 𝜔p1, 1, 1q. There are some important constants related to rectangular

matrix multiplication, such as, 𝛼 ď 1 defined as the largest constant such that 𝜔p1, 𝛼, 1q “ 2, and 𝜇

is the (unique) solution to the equation 𝜔p𝜇, 1, 1q “ 2𝜇 ` 1. Note that 𝛼 “ 1 if and only if 𝜔 “ 2,

and the current best bounds on 𝛼 are 0.321334 ă𝛼 ď 1 [61]. Moreover, 𝜇 “ 1

2
if 𝜔 “ 2, and the

current best bounds on 𝜇 are 1

2
ď 𝜇ă 0.527661 [61].

Amossen and Pagh [7] first proposed an algorithm for the Boolean matrix multiplication by using

fast matrix multiplication, which runs in �̃�

´

𝑁
2

3 ¨ OUT
2

3 ` 𝑁
p2´𝛼q𝜔´2

p1`𝜔qp1´𝛼q ¨ OUT
2´𝛼𝜔

p1`𝜔qp1´𝛼q ` OUT

¯

time when OUT ě 𝑁 , and �̃�

´

𝑁 ¨ OUT
𝜔´1

𝜔`1

¯

time when OUT ă 𝑁 . Very recently, Abboud et al. [1]

have completely improved this to �̃�

´

𝑁 ¨ OUT
𝜇

1`𝜇 ` OUT ` 𝑁
p2`𝛼q𝜇

1`𝜇 ¨ OUT
1´𝛼𝜇

1`𝜇

¯

. Improving these

results further for any value of OUT remains a challenging task, given the hardness of the all-edge-
triangle problem [1]. Several algorithms for Boolean matrix multiplication also measure complexity

by the domain size of attributes; readers are referred to [1] for additional details. Deep et al. [24]

and Huang and Chen [34] have further investigated the efficient practical implementation of these

algorithms for sparse matrix multiplication.

Finally, Hu [31] applied fast matrix multiplication to speed up acyclic join-project queries and

showed a polynomial improvement over the combinatorial Yannakakis algorithm. Independently,

the algorithm community has extensively utilized fast matrix multiplication to speed up detecting,

counting, and listing subgraph patterns, such as cliques [6, 22, 52] and cycles [36]. In addition, this

technique has been used to approximately count cycles [19, 55], k-centering in graphs [37], etc.

9 CONCLUSION
In this paper, we established matching lower and upper bounds for computing general acyclic

join-aggregate queries in an output-optimal manner, characterized by the free-connex fractional

hypertree width of the queries. This result generalizes and improves upon all previously known

upper and lower bounds. As a by-product, it also implies new output-sensitive algorithms for certain

cyclic queries, but their optimality is still unknown. Hence, achieving output-optimal algorithms

for cyclic join-aggregate queries remains an interesting open question. In addition, it is interesting

to investigate join-aggregate queries defined over multiple semi-rings [3] and to explore if one can

apply our new output-optimal algorithm to improve processing multiple semi-rings.
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A MISSING PROOFS IN SECTION 3
A.1 Helper Lemmas

Lemma A.1. For any query Q “ pV, E, yq, any optimal fractional edge covering 𝜌˚p¨q of Q satisfies:

‚ If there exists a unique attribute 𝐴 P V , say E𝐴 “ t𝑒u, then 𝜌˚p𝑞q “ 1 ` 𝜌˚p𝑞rV ´ 𝑒sq.
‚ For any subsets 𝑆1 Ď 𝑆2 Ď V of attributes, 𝜌˚p𝑞r𝑆1sq ď 𝜌˚p𝑞r𝑆2sq.

Lemma A.2. For any D-connected query Q “ pV, E, yq and any TD pT , 𝜒q P FTDpQq, there exists
a node 𝑢 P nodespT q such that y “ 𝜒p𝑢q.

Proof of Lemma A.2. As Q is D-connected, 𝑒´y ‰ H holds for every relation 𝑒 P E; otherwise,
𝑒 becomes a singular D-connected subquery of Q. Let pT , 𝜒q be an arbitrary free-connex TD of Q,

with 𝑆 Ď nodespT q as the connex of T . Let T1,T2, ¨ ¨ ¨ ,Tℓ be the set of connected subtrees for some

ℓ P Z`
, after removing 𝑆 from T . For simplicity, we define E𝑖 “ t𝑒 P E : D𝑢 P nodespT𝑖q, 𝑒 Ď 𝜒p𝑢qu.

It is easy to see that pE1, E2, ¨ ¨ ¨ , Eℓq forms a partition of E. On other hand, E “
Ť

𝑖Prℓs E𝑖 . On the

other hand, E𝑖 X E 𝑗 “ H for any 𝑖, 𝑗 P rℓs with 𝑖 ‰ 𝑗 . Suppose not, let 𝑒 P E𝑖 X E 𝑗 . As 𝑒 ´ y ‰ H

and 𝑒 1 Ď y for every node 𝑒 1 P nodesp𝑆q, the set of nodes containing non-output attributes in 𝑒 ´ y
does not form a connected subtree, contradicting the fact that pT , 𝜒q is a valid TD. For any 𝑖 P rℓs,

relations in E𝑖 must be D-disconnected from remaining relations. As Q is D-connected, there must

exist some 𝑖 P rℓs with E𝑖 “ E and E 𝑗 “ H for any other 𝑗 . Let 𝑢 P nodesp𝑆q be the unique node

sharing an edge with some node in T𝑖 . As
Ť

𝑢1Pnodesp𝑆q 𝜒p𝑢q “ y, and 𝜒p𝑢1q X 𝜒p𝑢2q Ď 𝜒p𝑢q for ever

pairs of nodes 𝑢1 P nodesp𝑆q, 𝑢2 P nodespT𝑖q, y Ď 𝜒p𝑢q. Together with 𝜒p𝑢q Ď y, y “ 𝜒p𝑢q. □

Proof of Lemma 3.2. Direction fn-fhtwpQq ď fn-fhtwpQ1q. It suffices to prove that for each TD
pT 1, 𝜒 1q P FTDpQ1q, we can construct a TD pT , 𝜒q P FTDpQq with the same width. Consider the

post-ordering of relations 𝑒1, 𝑒2, ¨ ¨ ¨ , 𝑒ℓ removed by the cleanse process. Suppose 𝑒1 is removed due

to some relation 𝑒 . Let 𝑢 P nodespT 1q be a node such that 𝑒 Ď 𝜒p𝑢q. We add a new node 𝑢1 as

a child of 𝑢 and set 𝜒p𝑢1q “ 𝑒1. Note that p𝑒1 ´ 𝑒q X y “ H. We move to the next relation and

apply this procedure recursively. As 𝜌˚p𝑞r𝜒p𝑢𝑖qsq “ 1 for each node 𝑢𝑖 P nodespT q ´ nodespT 1q,

widthpT 1, 𝜒 1q “ widthpT , 𝜒q. Let 𝑆 1
be the connex of T 1

. It can be easily checked that 𝑆 1
is also a

connex of T . Hence, pT , 𝜒q P FTDpQq.

Direction fn-fhtwpQq ě fn-fhtwpQ1q. It suffices to prove that for each TD pT , 𝜒q P FTDpQq, we

can construct a TD pT 1, 𝜒 1q P FTDpQ1q with smaller (or at least no larger) width. For simplicity,

assume Q “ pV, E, yq and Q1 “ pV 1, E1, yq. Let 𝑞 “ pV, Eq and 𝑞1 “ pV 1, E1q. Implied by the

cleanse procedure, E1 Ď t𝑒 X V 1
: 𝑒 P Eu. Moreover, pV ´ V 1q X y “ H. We construct another

function 𝜒 1
: nodespT q Ñ 2

V1

as follows. For each node 𝑢 P nodespT q, 𝜒 1p𝑢q “ 𝜒p𝑢q X V 1
. It can

be easily checked that pT , 𝜒 1q P FTDpQ1q. Moreover, for each node 𝑢 P nodespT q, 𝜌˚p𝑞r𝜒p𝑢qsq “

𝜌˚p𝑞1r𝜒p𝑢qsq ě 𝜌˚p𝑞1r𝜒 1p𝑢qsq, where the first inequality follows that one can always assign weight

0 to all relations in E ´ E1
without losing the optimality. Hence, widthpT , 𝜒q ě widthpT , 𝜒 1q. □

Lemma A.3. For any query Q “ pV, E, yq, there exists a TD pT , 𝜒q with the smallest width while
satisfying the following property: each unique attribute 𝐴 P V only appears in one bag of T .

Proof of Lemma A.3. Let pT , 𝜒q be an arbitrary TD of Q with the smallest width. We perform

the following step if a unique attribute 𝐴 P V appears in more than one bag of T . Consider an

arbitrary node 𝑢 P nodespT q with 𝐴 P 𝜒p𝑢q. We construct another mapping 𝜒 1
: nodespT q Ñ 2

V

as follows: 𝜒 1p𝑣q “ 𝜒p𝑣q ´ t𝐴u if 𝑣 ‰ 𝑢 and 𝜒 1p𝑣q “ 𝜒p𝑣q otherwise. It can be easily checked that

pT , 𝜒 1q is a valid TD if Q with widthpT , 𝜒 1q ď widthpT , 𝜒q. We iteratively apply this argument

until each unique attribute only appears in one bag of T . □
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A.2 Proof of Corollary 3.5
LemmaA.4. For an acyclic queryQ, ifQ is D-disconnected with D-connected subqueriesQ1,Q2, . . . ,Qℎ ,

fn-fhtwpQq “ max𝑖Prℎs fn-fhtwpQ𝑖q.

Proof of Lemma A.4. Let pE1, E2, ¨ ¨ ¨ , Eℎq be the partition of E defined by the D-connectivity

of Q. For each 𝑖 P rℎs, Q𝑖 “ pV𝑖 , E𝑖 , y𝑖q with V𝑖 “
Ť

𝑒PE𝑖
𝑒 and y𝑖 “ y X V𝑖 . We first note an

equivalent expression of that right-hand-side of the equation above:

max

𝑖Prℎs
min

pT𝑖 ,𝜒𝑖qPFTDpQ𝑖q
widthpT𝑖 , 𝜒𝑖q “ min

pT1,𝜒1q,¨¨¨ ,pTℎ,𝜒ℎqP

FTDpQ1qˆ¨¨¨ˆFTDpQℎq

max

𝑖Prℎs
widthpT𝑖 , 𝜒𝑖q (2)

Direction (1) ď (2). Consider an arbitrary combination tpT1, 𝜒1q, ¨ ¨ ¨ , pTℎ, 𝜒ℎqu P FTDpQ1qˆ¨ ¨ ¨ˆ

FTDpQℎq. We next construct a TD pT , 𝜒q for Q. From Lemma A.2, there exists a node𝑢𝑖 P nodespT𝑖q
with y𝑖 “ 𝜒p𝑢𝑖q. We root T𝑖 at node 𝑢𝑖 . We next build a width-1 TD pT 1, 𝜒 1q for the sub-query Q1 “

py, ty𝑖 : 𝑖 P rℎsuq that there is a one-to-one correspondence between bags in T 1
and relations in ty𝑖 :

𝑖 P rℎsu. For each 𝑖 P rℎs, let 𝑢 P nodesp𝑇 1q be the node with 𝜒p𝑢q “ y𝑖 . We add T𝑖 as a child of 𝑢. It

can be checked that widthpT , 𝜒q “ max

"

widthpT 1, 𝜒 1q,max

𝑖Prℎs
widthpT𝑖 , 𝜒𝑖q

*

“ max

𝑖Prℎs
widthpT𝑖 , 𝜒𝑖q.

Direction (1) ě (2). Consider an arbitrary TD pT , 𝜒q P FTDpQq. For each 𝑖 P rℎs, we construct

a mapping 𝜒𝑖 : nodespT q Ñ 2
V𝑖

as follows. For each node 𝑡 P nodespT q, we set 𝜒𝑖p𝑡q “ 𝜒p𝑢q X

V𝑖 . pT , 𝜒𝑖q is a valid TD for Q𝑖 . Moreover, widthpT , 𝜒𝑖q ď widthpT , 𝜒q. For the combination

tpT , 𝜒1q, pT , 𝜒2q, ¨ ¨ ¨ , pT , 𝜒ℎqu, widthpT , 𝜒q ě max

𝑖Prℎs
widthpT , 𝜒𝑖q. Hence, (1) ě (2) follows. □

Lemma A.5. For an acyclic query Q, if Q is D-connected, fn-fhtwpQq “ 𝜌˚ p𝑞rysq, i.e., the fractional
edge covering number of the sub-query induced by output attributes.

Proof of Lemma A.5. From Lemma 3.2, ifQ is not cleansed, we have fn-fhtwpQq “ fn-fhtwpQ1q,

where Q1
is the cleansed version of Q. Then, it suffices to show that for any a D-connected and

cleansed query Q, we have fn-fhtwpQq “ 𝜌˚p𝑞rysq.

Direction fn-fhtwpQq ě 𝜌˚p𝑞rysq. Consider an arbitrary TD pT , 𝜒q P FTDpQq. By Lemma A.2,

there is a node 𝑢 P nodespT q with y “ 𝜒p𝑢q. Then, 𝜌˚p𝑞rysq “ 𝜌˚p𝑞r𝜒p𝑢qsq ď widthpT , 𝜒q.

Applying this argument to all possible TDs in FTDpQq, we have 𝜌˚p𝑞rysq ď fn-fhtwpQq.

Direction fn-fhtwpQq ď 𝜌˚p𝑞rysq. It suffices to identify a TD pT , 𝜒q P FTDpQqwithwidthpT , 𝜒q “

𝜌˚p𝑞rysq. Let pT , 𝜒q be a width-1 TD of Q, where each unique (output) attribute only appears in

one bag of T . As Q is cleansed, a unique output attribute 𝐴 P y must exist and only appear in

one bag, say 𝑢. We root T at node 𝑢, and construct another mapping 𝜒 1
: nodespT q Ñ 2

V
as

follows. Consider an arbitrary node 𝑢1 P nodespT q. Let T𝑢1
the subtree of T rooted at 𝑢1. We set

𝜒 1p𝑢1q “ 𝜒p𝑢1q Y py X
ď

𝑢2PnodespT𝑢
1

q

𝜒p𝑢2qq, i.e., augmenting 𝑢1 with all output attributes in T𝑢1
.

We next show fn-fhtwpQq ď 𝜌˚p𝑞rysq by distinguishing two more cases:

‚ If 𝑢1 is assigned with weight 1 by some optimal fractional edge covering of 𝑞r𝜒p𝑢1qs, we have

𝜌˚ p𝑞r𝜒p𝑢1qsq “ 1 ` 𝜌˚p𝑞r𝜒 1p𝑢1q ´ 𝜒p𝑢1qsq ď 1 ` 𝜌˚p𝑞ry ´ 𝜒p𝑢qsq “ 𝜌˚p𝑞rysq

where the inequality is implied by 𝜒 1p𝑢1q´𝜒p𝑢1q Ď y´𝜒p𝑢q. Suppose not, let𝐴 P p𝜒 1p𝑢1q ´ 𝜒p𝑢1qq´

py ´ 𝜒p𝑢qq be an arbitrary attribute. Note that 𝐴 P 𝜒p𝑢q, 𝐴 P 𝜒p𝑢2q for some node 𝑢2 P

nodespT𝑢1
q, but 𝐴 R 𝜒p𝑢1q. As 𝑢1 lies on the path between 𝑡 and 𝑢2, pT , 𝜒q is not a valid TD for

Q, coming to a contradiction.

‚ Otherwise, 𝑢1 is not assigned with weight 1 by any optimal fractional edge covering of 𝑞r𝜒p𝑢1qs.

We next prove 𝜌˚p𝑞r𝜒p𝑢1q X ysq “ 𝜌˚p𝑞r𝜒p𝑢1qsq. Suppose not, as 𝜒p𝑢1q X y Ď 𝜒p𝑢1q, we
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must have 𝜌˚p𝑞r𝜒p𝑢1q X ysq ă 𝜌˚p𝑞r𝜒p𝑢1qsq. As both 𝑞r𝜒p𝑢1q X ys and 𝑞r𝜒p𝑢1qs are acyclic,

𝜌˚p𝑞r𝜒p𝑢1q X ysq and 𝜌˚p𝑞r𝜒p𝑢1qsq are integers. Meanwhile, we observe that any fractional edge

covering for 𝑞r𝜒p𝑢1q Xys together with assigning weight 1 to relation 𝑒1 is a valid fractional edge

covering for 𝑞r𝜒p𝑢1qs, hence 𝜌˚p𝑞r𝜒p𝑢1qsq “ 𝜌˚p𝑞r𝜒p𝑢1q X ysq ` 1. Then, the optimal fractional

edge covering for 𝑞r𝜒p𝑢1q X ys together with assigning weight 1 to relation 𝑒1 is also an optimal

fractional edge covering for 𝑞r𝜒p𝑢1qs, coming to a contradiction. Hence, we have:

𝜌˚p𝑞r𝜒p𝑢1qsq “ 𝜌˚p𝑞r𝜒p𝑢1q X ysq ď 𝜌˚p𝑞rysq.

Applying this argument to every node in T , we obtain fn-fhtwpQq ď widthpT , 𝜒 1q ď 𝜌˚p𝑞rysq. □

A.3 Free-connex Submodular Width and #Free-connex Submodular Width
Definition A.6 (The set of polymatroids). Given a hypergraph 𝑞 “ pV, E), a function h : 2

V Ñ R`

is called a polymatroid if it satisfies the following properties:

ℎpXq ` ℎpYq ě ℎpX Y Yq ` ℎpX X Yq @X,Y Ď V, (submodularity) (3)

ℎpXq ď ℎpYq @X Ď Y Ď V (monotonicity) (4)

ℎpHq “ 0 (strictness) (5)

The above properties are also known as Shannon inequalities. We use ΓV to denote the set of all

polymatroids over V . WhenV is clear from the context, we dropV and write Γ.

Definition A.7 (The set of #polymatroids). Given a hypergraph 𝑞 “ pV, E), a function h : 2
V Ñ

R` is called a #polymatroid if it satisfies the following properties:

ℎpXq ` ℎpYq ě ℎpX Y Yq ` ℎpX X Yq @X,Y Ď V, D𝑒 P E,X X Y “ 𝑒 (submodularity) (6)

ℎpXq ď ℎpYq @X Ď Y Ď V (monotonicity) (7)

ℎpHq “ 0 (strictness) (8)

We use Γ#V to denote the set of all #polymatroids overV . WhenV is clear from the context, we

drop V and write Γ# instead of Γ#V .

Definition A.8 (The set of edge-dominated functions). Given a hypergraph 𝑞 “ pV, Eq, a function

h : 2
V Ñ R` is called edge-dominated if it satisfies the following property: ℎpXq ď 1, @X P E. We

use ED𝑞 to denote the set of all edge-dominated functions over 𝑞. When 𝑞 is clear from the context,

we drop 𝑞 and simply write ED.

Definition A.9 (Free-connex Submodular Width). For any query Q, its free-connex submodular

width of Q denoted as fn-subwpQq, is defined as:

fn-subwpQq “ max

hPΓXED
min

pT,𝜒qPFTDpQq
max

𝑢PnodespTq
ℎp𝜒p𝑢qq (9)

Definition A.10 (#Free-connex Submodular Width). For any query Q, its free-connex submodular

width of Q denoted as fn-subwpQq, is defined as:

#fn-subwpQq “ max

hPΓ#XED
min

pT,𝜒qPFTDpQq
max

𝑢PnodespTq
ℎp𝜒p𝑢qq (10)

Lemma A.11. Given any query Q “ pV, Eq, for a subset 𝑆 Ď V of attributes,

𝜌˚p𝑞r𝑆sq “ max

hPΓXED
ℎp𝑆q “ max

hPΓ#XED
ℎp𝑆q.
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Proof of Lemma 3.9. It suffices to show that for any query Q, #fn-subwpQq ď fn-fhtwpQq. For

fn-fhtwpQq, we first rewrite (1) as below:

fn-fhtwpQq “ min

pT,𝜒qPFTDpQq
widthpT , 𝜒q “ min

pT,𝜒qPFTDpQq
max

𝑢PnodespTq
𝜌˚p𝜒p𝑢qq

“ min

pT,𝜒qPFTDpQq
max

𝑢PnodespTq
max

hPΓ#XED
ℎp𝜒p𝑢qq

“ min

pT,𝜒qPFTDpQq
max

hPΓ#XED
max

𝑢PnodespTq
ℎp𝜒p𝑢qq

By comparing the above and (10), it immediately follows from the min-max inequality that

#fn-subwpQq ď fn-fhtwpQq. □

A.4 Proof of Lemma 3.10
Implied by Lemma 3.9, it suffices to show that for any acyclic query Q, fn-subwpQq ě fn-fhtwpQq

holds. Recall the procedural definition of fn-fhtwpQq in Corollary 3.5. We prove it via two steps:

Step 1: Q is D-connected. In this case, we will identify a polymatroid h P Γ X ED such that for

any TD pT , 𝜒q P FTDpQq, there always exists a node 𝑢 P nodespT q with ℎp𝜒p𝑢qq “ 𝜌˚p𝑞rysq. Note

that fn-fhtwpQq “ 𝜌˚p𝑞rysq. From Lemma 7.3, let 𝑆 Ď y be a set of fn-fhtwpQq output attributes

such that no pairs of them appears in the same relation from E. We identify a modular function ℎ

as follows. Let each attribute 𝐴 P 𝑆 represent an independently random variable with ℎp𝐴q “ 1. Let

each remaining attribute 𝐵 P V´𝑆 represent a constant withℎp𝐵q “ 0. It can be easily checked that

ℎ P Γ X ED. Consider an arbitrary TD pT , 𝜒q P FTDpQq. From Lemma A.2, there must exist a node

𝑢 P nodespT q such that 𝜒p𝑢q “ y. Hence, ℎp𝜒p𝑢qq “
ř

𝐴P𝑆 ℎp𝐴q “ |𝑆| “ fn-fhtwpQq “ 𝜌˚p𝑞rysq.

Step 2: Q is D-disconnected. Let Q1,Q2, ¨ ¨ ¨ ,Qℎ be the D-connected subqueries of Q. Wlog,

assume fn-fhtwpQq “ fn-fhtwpQ1q. Let Q𝑖 “ pV𝑖 , E𝑖 , y𝑖q where V𝑖 “
Ť

𝑒PE𝑖
𝑒 and y𝑖 “ V𝑖 X 𝑦.

Similarly, let 𝑆 Ď y1 be a set of fn-fhtwpQ1q output attributes such that no pair of them appears

in the same relation from E1. We next argue that no pair appears in the same relation from E.
Suppose not, assume 𝐴,𝐴1 P 𝑆 are two output attributes that appear together in some relation

𝑒 P E ´ E1. In Q1, let 𝐴0p“ 𝐴q, 𝐴1, 𝐴2, ¨ ¨ ¨ , 𝐴ℓ , 𝐴ℓ`1p“ 𝐴1q be a sequence of attributes such that

(1) 𝐴1, 𝐴2, ¨ ¨ ¨ , 𝐴ℓ P V ´ y; (2) there exists ℓ ` 1 relations 𝑒0, 𝑒1, ¨ ¨ ¨ , 𝑒ℓ P E1 such that for each

𝑖 P t0, 1, ¨ ¨ ¨ , ℓu, we have 𝐴𝑖 , 𝐴𝑖`1 P 𝑒𝑖 ; (3) for every pair of non-consecutive attributes 𝐴𝑖 , 𝐴 𝑗 for

some 𝑖, 𝑗 with | 𝑗 ´ 𝑖| ą 1, there exists no relation 𝑒 1 P E1 containing both 𝐴𝑖 , 𝐴 𝑗 . Note that for

any other relation 𝑒 P E ´ E1, 𝑒 X t𝐴1, 𝐴2, ¨ ¨ ¨ , 𝐴ℓu “ H, which is implied by the definition

of D-connectivity. Hence, (3) is equivalent to for every pair of non-consecutive attributes 𝐴𝑖 , 𝐴 𝑗

for some 𝐼 , 𝑗 with | 𝑗 ´ 𝑖| ą 1, there exists no relation 𝑒 1 P E containing both 𝐴𝑖 , 𝐴 𝑗 . If ℓ ě 1,

we have identified a cycle 𝐴0p“ 𝐴q, 𝐴1, 𝐴2, ¨ ¨ ¨ , 𝐴ℓ , 𝐴ℓ`1p“ 𝐴1q, contradicting the fact that Q is

acyclic. Hence, ℓ ă 1, which means 𝐴1, 𝐴2, ¨ ¨ ¨ , 𝐴ℓ do not exist; in other words, 𝐴,𝐴1
appear in

some common relation from E1. As Q is acyclic, there must exist a relation 𝑒 1 P E such that

𝐴,𝐴1, 𝐴2, ¨ ¨ ¨ , 𝐴ℓ , 𝐴
1 P 𝑒 1

; otherwise, we have identified a cycle, contradicting the fact that Q is not

acyclic. As 𝐴1, 𝐴2, ¨ ¨ ¨ , 𝐴ℓ P 𝑒 1
, 𝑒 1 P E1. This comes to a contradiction that 𝐴,𝐴1

does not appear in

the same relation of E1. Again, let each attribute 𝐴 P 𝑆 represent an independent random variable

with ℎp𝐴q “ 1. Let each remaining attribute 𝐵 P V ´ 𝑆 represent a constant with ℎp𝐵q “ 0.

It can be easily checked that ℎ P Γ X ED. We claim that a node 𝑢 P nodespT q must exist with

y1 Ď 𝜒p𝑢q. Consider a TD pT , 𝜒 1q with 𝜒 1p𝑣q “ 𝜒p𝑣q ´ py ´ y1q for each node 𝑣 P nodespT q. Note

that pT , 𝜒 1q is also a valid free-connex TD for Q1; hence there must exist some node 𝑢 P nodespT q

with 𝜒 1p𝑢q “ y1. Correspondingly, y1 Ď 𝜒p𝑢q. Hence, ℎp𝜒p𝑢qq “
ř

𝐴P𝑆 ℎp𝐴q “ |𝑆| “ fn-fhtwpQq.
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B YANNAKAKIS ALGORITHM REVISITED
B.1 Worst-case Optimality
Next, we will give a new analysis of the Yannakakis algorithm by a more fine-grained inspection of

its execution. Similar to Algorithm 3, we first remove all dangling tuples, decompose the query

into a set of D-connected subqueries, compute their query results separately and finally combine

their results via joins. Below, we focus on D-connected acyclic queries.

In the proof of Lemma A.5, we have identified a width-1 TD pT , 𝜒q such that its corresponding

free-connex TD pT 1, 𝜒 1q defined by the Yannakakis algorithm has widthpT , 𝜒 1q “ fn-fhtwpQq.

Recall that for each node 𝑢 P nodespT q, 𝜒 1p𝑢q is the set of attributes on which the intermediate

join results will be materialized by the Yannakakis algorithm. Hence, the intermediate join size can

be bounded by 𝑂
`

𝑁 fn-fhtwpQq
˘

. We obtain:

Theorem B.1. For any acyclic query Q “ pV, E, yq and an instance R of input size 𝑁 and output
size OUT, the Yannakakis algorithm can compute QpRq within 𝑂

`

𝑁 fn-fhtwpQq ` OUT

˘

time.

For any acyclic query Q “ pV, E, yq with 𝑞 “ pV, Eq, fn-fhtwpQq ď 𝜌˚p𝑞rysq. Hence, we can

show that 𝑁 fn-fhtwpQq ` OUT “ 𝑂p𝑁 𝜌˚p𝑞rysqq. Therefore, the Yannakakis algorithm is worst-case

optimal for acyclic queries.

B.2 a-hierarchicalQuery
Theorem B.2. For any a-hierarchical query Q and an instance R of input size 𝑁 and output size

OUT, the Yannakakis algorithm computes QpRq in 𝑂
´

𝑁 ¨ OUT
1´ 1

fn-fhtwpQq ` OUT

¯

time.

A

B C

D E F G

H I J K
ABDH

ABDI

ABEK

ABEJ

ACF

ACG

non-output attributeoutput attribute

Fig. 12. An illustration of the attribute tree (left) and width-
1 TD (right) of a cleansed, D-connected, and hierarchical join-
aggregate query Q “ ‘𝐴,𝐶,𝐷,𝐸𝑅1p𝐴, 𝐵, 𝐷, 𝐻q ’ 𝑅2p𝐴, 𝐵, 𝐷, 𝐼q ’

𝑅3p𝐴, 𝐵, 𝐸, 𝐽 q ’ 𝑅4p𝐴, 𝐵, 𝐸, 𝐾q ’ 𝑅5p𝐴,𝐶, 𝐹 q ’ 𝑅6p𝐴,𝐶,𝐺q.

We also resort to the same outline

as Algorithm 3, except that we invoke

the Yannakakis algorithm at lines 4-5.

It suffices to assume that the input

join-query Q “ pV, E, yq is acyclic,

cleansed, and existentially connected.

By definition, Q is hierarchical. More-

over, Q “ pV, E, yq has an attribute

tree H , such that (i) there is a one-

to-one correspondence between at-

tributes in V and nodes in H ; (ii)

each relation corresponds to a leaf-to-root path; (iii) every leaf node (that corresponds to a unique

attribute) must be an output attribute. Note that |E| “ fn-fhtw. InH , letH𝑥 be the subtree ofH
rooted at attribute 𝑥 P V . Let Q𝑥 be the sub-query derived by relations that contain attribute 𝑥 ,

i.e., Q𝑥 “ pV𝑥 , E𝑥 , y𝑥 q, whereV𝑥 “
Ť

𝑒PE𝑥
𝑒 and y𝑥 “ y X V𝑥 . Let pathp𝑥1, 𝑥2q denote the set of

attributes lying on the path between 𝑥1 and 𝑥2 inH .

We build a width-1 TD pT , 𝜒q for Q as follows. Consider the children of the root attribute in

H . Let tE1, E2, ¨ ¨ ¨ , E 𝑗u be a partition of E such that all relations in E𝑖 shares one common child

attribute. We build a width-1 TD pT𝑖 , 𝜒𝑖q for each group E𝑖 , and then add T𝑖 for every 𝑖 ă 𝑗 as the

last p 𝑗 ´ 1q child nodes of the root of T𝑗 . See an example in Figure 12. We apply the Yannakakis

algorithm along such a width-1 TD by traversing nodes in a post order.

Below, we aim to bound the number of intermediate join results materialized by the Yannakakis

algorithm. Let 𝑞 “ pV, Eq be the corresponding join query of Q. For simplicity, we define

𝜆𝑞,y,Rp𝑥q “
ˇ

ˇ𝜋pathp𝑥,𝑟qYy𝑥𝑞pRq
ˇ

ˇ
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for attribute𝑥 P V . The number of intermediate join result thatmaterialized is exactly𝑂

ˆ

max

𝑥PH
𝜆Rp𝑥q

˙

.

LetℜQp𝑁,OUTq denote the class of all input instances of input size 𝑁 and output size OUT for Q.

We can further rewrite the size bound above as:

max

RPℜQp𝑁,OUTq
max

𝑥PH
𝜆Rp𝑥q ď max

𝑥PH
max

RPℜQp𝑁,OUTq
𝜆Rp𝑥q

Then, it suffices to prove for an arbitrary attribute 𝑥 P H : max

RPℜQp𝑁,OUTq
𝜆Rp𝑥q ď 𝑁 ¨ OUT

1´ 1

|E𝑥 |
.

As |E𝑥 | ď fn-fhtw, we come to the desired result. Let’s take a closer look at the sub-query 𝜆Rp𝑥q

derived, which is captured by the class of generalized star query below. Implied by Lemma B.4, we

complete the whole proof.

Definition B.3 (Generalized Star). A cleansed, D-connected and hierarchical query Q “ pV, E, yq

is a generalized star if V ´ y Ď
Ş

𝑒PE 𝑒 .

Lemma B.4. For a generalized star query Q “ pV, E, yq of 𝑘 relations, given any parameter 1 ď 𝑁

and OUT ď 𝑁𝑘 , we have max

RPℜQp𝑁,OUTq
|’𝑒PE 𝑅𝑒 | “ 𝑂

´

𝑁 ¨ OUT1´ 1

𝑘

¯

.

Proof. We distinguish two more cases on Q. If
Ş

𝑒PE 𝑒 Ď y. In this case, |’𝑒1PE 𝑅𝑒1 | “ OUT

holds for an arbitrary instance R P ℜQp𝑁,OUTq. As OUT ď
ś

𝑒PE |𝑅𝑒 |, this result automatically

holds. In the remaining, we focus on the case when

Ş

𝑒PE 𝑒 ´ y ‰ H. Let z “
Ş

𝑒PE 𝑒 X y. Our
proof consists of two steps:

Step 1. Consider a derived sub-query Q1 “ pV 1, E1, y1q whereV 1 “ V ´ z, E1 “ t𝑒 XV 1
: 𝑒 P Eu

and y1 “ y ´ z. Note that |E1| “ |E|. We will prove

max

RPℜQ1 p𝑁,OUTq
|’𝑒PE 𝑅𝑒 | “ 𝑂

´

𝑁 ¨ OUT
1´ 1

|E1|

¯

with a similar argument made in [7]. Let

Ş

𝑒PE1 𝑒 “ t𝐵u be the unique non-output attribute

appearing in all relations from Q1
. Suppose domp𝐵q “ t𝑏1, 𝑏2, ¨ ¨ ¨ , 𝑏ℓu. We introduce a variable Δ𝑒

𝑖

for each value 𝑏𝑖 to denote the number of input tuples that display 𝑏𝑖 in attribute 𝐵 in relation 𝑅𝑒 .

The largest number of full join result can be produced is captured as follows:

max.

ÿ

𝑖Prℓs

ź

𝑒PE1

Δ𝑒
𝑖 subject to.

ÿ

𝑒PE1

ÿ

𝑖Prℓs

Δ𝑒
𝑖 ď 𝑁,

ź

𝑒PE1

Δ𝑒
𝑖 ď OUT, @𝑖 P rℓs

The optimal solution Θ
´

𝑁 ¨ OUT
1´ 1

|E1|

¯

is achieved when Δ𝑒
𝑖 “ OUT

1

|E1|
for any 𝑖 P rℓs and 𝑒 P E1

,

and ℓ “ 𝑁

|E1|¨OUT

1

|E1|

.

Step 2. Consider an arbitrary instance R of Q. Let 𝑧1, 𝑧2, ¨ ¨ ¨ , 𝑧ℓ be the values in the effective

domain of z in R. Let 𝑁𝑖 “
ÿ

𝑗Prℓs

|𝜎z“𝑧𝑖𝑅 𝑗 | and OUT𝑖 “
ź

𝑗Prℓs

|𝜎z“𝑧𝑖QpRq|. Implied by Step 1, the

largest number of full join result can be produced is at most𝑂

ˆ

𝑁𝑖 ¨ OUT
1´ 1

|E|

𝑖

˙

. Given the following

two constraints

ÿ

𝑖Prℓs

𝑁𝑖 “ 𝑁, and
ÿ

𝑖Prℓs

OUT𝑖 “ OUT, the largest number of full join result produced

can be bounded by

ř

𝑖Prℓs 𝑁𝑖 ¨ OUT
1´ 1

|E|

𝑖
ď
ř

𝑖Prℓs 𝑁𝑖 ¨ OUT1´ 1

𝑘 ď 𝑁 ¨ OUT
1´ 1

|E| . As |E| “ 𝑘 , this

is exactly 𝑂

´

𝑁 ¨ OUT1´ 1

𝑘

¯

.

Combining these two steps, we complete the whole proof. □
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B.3 Non-a-hierarchicalQuery

A1 A2 A3 A4

OUT
2

N

OUT
N
2 1

1
N

OUTN
2

OUT
2

Fig. 13. An illustration of hard instance
for Yannakakis algorithm on line query
with 𝑘 “ 3 [31].

As shown in [31], Yannakakis algorithm indeed incurs Θp𝑁 ¨

OUTq time for line queries. We first revisit the hard instance

constructed for line-3 query as shown in Figure 13. Consider

an arbitrary acyclic but non-a-hierarchical join-aggregate

query Q. Let Q1
be its cleansed version. Let Q1,Q2, ¨ ¨ ¨ ,Qℎ

be the connected sub-queries in 𝐺D
Q1 . As Q is acyclic, every

sub-query Q𝑖 is also acyclic. As Q is non-a-hierarchical, at

least one sub-query is not hierarchical, say Q1. There must

exist a pair of attributes 𝑥, 𝑥 1
and three relations 𝑒, 𝑒 1, 𝑒2

such

that 𝑥 P 𝑒 X 𝑒 1 ´ 𝑒2
and 𝑥 1 P 𝑒 1 X 𝑒2 ´ 𝑒 . Let pT , 𝜒q be a

width-1 TD of Q1. As Q1 is cleansed, every leaf node must

contain some unique attribute.

It is always feasible to find a pair of leaf nodes 𝑒1, 𝑒𝑛 in T such that 𝑒, 𝑒2 P pathp𝑒1, 𝑒𝑛q, 𝑒 P

pathp𝑒1, 𝑒
2q and 𝑒2 P pathp𝑒 1, 𝑒𝑛q. It could be possible that 𝑒 “ 𝑒1 or 𝑒

2 “ 𝑒𝑛 . Let 𝐴1, 𝐴𝑛`1 be an

arbitrary unique output attribute in 𝑒1, 𝑒𝑛 separately. As Q1 is D-connected, there must exists a

subset 𝑆 of𝑚 relations in pathp𝑒1, 𝑒𝑛q (including 𝑒1 and 𝑒𝑛) and a subset of non-output attributes

𝐵1, 𝐵2, ¨ ¨ ¨ , 𝐵𝑚 such that 𝐵1 P 𝑒1, 𝐵𝑛 P 𝑒𝑛 , 𝐵𝑖 , 𝐵𝑖`1 P 𝑒𝑖 for some relation 𝑒𝑖 P pathp𝑒1, 𝑒𝑛q, and there

exists no relation 𝑒 1
such that 𝐵𝑖 , 𝐵 𝑗 P 𝑒 1

for any | 𝑗 ´ 𝑖| ą 1. Otherwise, Q1 is not D-connected.

Give an instance Rline of Qline with 𝑘 “ 3, we construct an instance R for Q as follows. We

set domp𝑥q “ t˚u for every attribute 𝑥 P V ´ t𝐶1,𝐶2, 𝐵1, 𝐵2, ¨ ¨ ¨ , 𝐵𝑚u. We use 𝐶1 to simulate 𝐴1,

use 𝐶2 to simulate 𝐴4, 𝐵1 to simulate 𝐴2 and all remaining attributes 𝐵2, 𝐵3, ¨ ¨ ¨ , 𝐵𝑚 to simulate 𝐴3.

For any relation 𝑒 , such that |𝑒 X t𝐵2, 𝐵3, ¨ ¨ ¨ , 𝐵𝑚u| ą 1, the projection of 𝑅𝑒 onto t𝐵2, 𝐵3, ¨ ¨ ¨ , 𝐵𝑚u

should be a one-to-one mapping. The argument for line-3 query can be applied for Q similarly, i.e.,

any query plan of the Yannakakis algorithm requires Θp𝑁 ¨ OUTq time.

C OUTPUT SIZE ESTIMATION
C.1 LineQueries [20]
It has been shown that how to obtain a constant-factor approximation of OUT for line queries in

near-linear time [20]. We borrow the technique of k minimum values (KMV) [10, 14], which is more

commonly used to estimate the number of distinct elements in the streaming model. KMV works by

applying a hash function to the input items, and keeping the 𝑘 minimum hash values, denoted as

𝑣1, 𝑣2, ¨ ¨ ¨ , 𝑣𝑘 . It has been shown that, with 𝑘 “ 𝑂p 1

𝜖2
q, the estimator

𝑘´1

𝑣𝑘
is an p1`𝜖q-approximation

of the number of distinct items in the data stream, with at least constant probability. Moreover,

given the KMVs of two sets, the KMV of the union of the two sets can be computed by simply

“merging” the two KMVs, i.e., keeping the 𝑘 minimum values of the 2𝑘 values from the two KMVs,

provided that they use the same hash function.

On a line query, for each 𝑎 P domp𝐴1q, we will obtain a constant-factor approximation ofOUT𝑎 “

|𝜋𝐴𝑛`1
𝑅1p𝑎,𝐴2q ’ 𝑅2p𝐴2, 𝐴3q ’ ¨ ¨ ¨ ’ 𝑅𝑛p𝐴𝑛, 𝐴𝑛`1q|. Note that OUT “

ř

𝑎Pdomp𝐴1q OUT𝑎 . We

compute a hash value for each distinct value in domp𝐴𝑛`1q to do so. Then it suffices to compute, for

each 𝑎 P domp𝐴1q, a KMV (with a constant 𝑘) over all distinct values in domp𝐴𝑛`1q that can join

with 𝑎. This can be done by using the merge operation above to compute the min. More precisely,

for 𝑖 “ 𝑛, 𝑛 ´ 1, . . . , 1, we compute the KMV for each 𝑎 P domp𝐴𝑖q, by merging all the KMVs for

𝑏 P domp𝐴𝑖`1q such that p𝑎, 𝑏q P 𝑅𝑖p𝐴𝑖 , 𝐴𝑖`1q.

The KMV obtained from each 𝑎 P domp𝐴1q gives us a constant-factor approximation of OUT𝑎

only with constant probability. To boost the success probability, we run 𝑂plog𝑁 q instances of this

algorithm in parallel using independent random hash functions and return the median estimator for
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each OUT𝑎 . This boosts the success probability to 1 ´ 1{𝑁𝑂p1q
for each OUT𝑎 . By a union bound,

the probability that all estimators are constant-factor approximations is also 1 ´ 1{𝑁𝑂p1q
. Then,

we also have a constant-factor approximation of OUT. The runtime of this algorithm is r𝑂p𝑁 q.

C.2 Estimate OUT on the fly [31]
However, it is unknown how to extend the KMV-based techniques to general acyclic queries. In

[31], Hu showed a method that can obtain a 2-approximation of OUT on the fly. As shown in

Algorithm 8, it iteratively compresses the input instances and invokes Algorithm 6 as a primitive,

which has been described in Section 5.

C.3 Double Guess of OUT [25]
We can doubly guess the value of OUT starting from 1, 2, 4, ¨ ¨ ¨ . For the 𝑖-th trial, we run the

algorithm for 𝑐 ¨ 𝑁 ¨ p2𝑖q1´ 1

𝑘 time before terminating the simulation if the execution is not com-

pleted, for some sufficiently large constant 𝑐 . The overall time complexity is

ř

𝑖PrrlogOUTss 𝑐 ¨
´

𝑁 ¨ p2𝑖q
1´ 1

fn-fhtwpQq ` 2
𝑖
¯

“ 𝑂

´

𝑁 ¨ OUT
1´ 1

fn-fhtwpQq ` OUT

¯

.

Algorithm 8: HybridYannakakisWithoutOUTpQ “ pV, E, yq,Rq

1 if |E| “ 1, say E “ t𝑒u then return ‘V´y𝑅𝑒 ;

2 E1 Ð t𝑒 P E : 𝑒 X y ‰ Hu;

3 𝑒 Ð an arbitrary relation in P E1
;

4 Put an ordering on elements in 𝜋𝑒Xy𝑅𝑒 as 𝑎1, 𝑎2, 𝑎3, ¨ ¨ ¨ ;

5 𝑆
p0q
𝑒 Ð 𝑅𝑒 , 𝑖 Ð 1;

6 while true do
7 𝑆

p𝑖q
𝑒 Ð H;

8 foreach 𝑡 P 𝑆
p𝑖´1q
𝑒 do

9 Suppose 𝜋𝑒Xy𝑡 “ 𝑎 𝑗 ;

10 𝑡 1 Ð a tuple with 𝜋𝑒Xy𝑡
1 “ 𝑎

t
𝑗`1

2
u
and 𝜋𝐴𝑡

1 “ 𝜋𝐴𝑡 for any attribute 𝐴 P 𝑒 ´ y;

11 𝑆
p𝑖q
𝑒 Ð 𝑆

p𝑖q
𝑒 Y t𝑡 1u;

12 if
ˇ

ˇ

ˇ
𝜋𝑒Xy𝑆

p𝑖q
𝑒

ˇ

ˇ

ˇ
“ 1 then break;

13 𝑖 Ð 𝑖 ` 1;

14 𝑅𝑒1 Ð 𝑅𝑒1 ˙ 𝑆
p𝑖q
𝑒 ;

15 Q1 Ð pV ´ 𝑒 X y, E ´ t𝑒u, y ´ 𝑒q;

16 J p𝑖q Ð

´

𝜋𝑒Xy𝑆
p𝑖q
𝑒

¯

ˆ HybridYannakakisWithoutOUT pQ1,R ´ t𝑅𝑒uq;

17 while 𝑖 ą 0 do
18 J p𝑖´1q Ð HybridYannakakis

´

Q,R ´ t𝑅𝑒u `

!

𝑆
p𝑖´1q
𝑒

)

, 2 ¨ |J p𝑖q|

¯

; § Algorithm 6;

19 𝑖 Ð 𝑖 ´ 1;

20 return J p0q
;
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